
Modeling data with Amazon DynamoDB

AWS Prescriptive Guidance

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

AWS Prescriptive Guidance: Modeling data with Amazon DynamoDB

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Table of Contents

Introduction ... 1
Process flow ... 2

RACI matrix .. 2
Process steps .. 5

Step 1. Identify the use cases and logical data model ... 5
Objectives .. 5
Process ... 5
Tools and resources .. 5
RACI .. 6
Outputs .. 6

Step 2. Create a preliminary cost estimation ... 6
Objective ... 6
Process ... 6
Tools and resources .. 7
RACI .. 7
Outputs .. 7

Step 3. Identify your data access patterns ... 7
Objective ... 7
Process ... 7
Tools and resources .. 8
RACI .. 8
Outputs .. 8
Example ... 9

Step 4. Identify the technical requirements ... 9
Objective ... 9
Process ... 9
Tools and resources .. 9
RACI .. 10
Outputs ... 10

Step 5. Create the DynamoDB data model .. 10
Objective ... 10
Process ... 10
Tools and resources .. 11
RACI .. 12

iii

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Outputs ... 12
Example ... 12

Step 6. Create the data queries .. 13
Objective ... 13
Process ... 13
Tools and resources .. 13
RACI .. 13
Outputs ... 14
Examples ... 14

Step 7. Validate the data model .. 14
Objective ... 14
Process ... 14
Tools and resources .. 14
RACI .. 15
Outputs ... 15

Step 8. Review the cost estimation .. 15
Objectives ... 15
Process ... 15
Tools and resources .. 15
RACI .. 16
Outputs ... 16

Step 9. Deploy the data model ... 16
Objective ... 16
Process ... 16
Tools and resources .. 16
RACI .. 16
Outputs ... 17
Example ... 17

Templates ... 19
Business-requirements assessment template ... 19
Technical-requirements assessment template ... 22
Access-patterns template ... 26

Template ... 27
Best practices ... 31
Hierarchical data modeling .. 32

Step 1: Identify the use cases and logical data model .. 32

iv

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Step 2: Create a preliminary cost estimation ... 35
Step 3: Identify your data-access patterns ... 35
Step 4: Identify the technical requirements ... 36
Step 5: Create a DynamoDB data model .. 36

Storing components in the table .. 37
The GSI1 index .. 38
The GSI2 index .. 39

Step 6: Create data queries ... 40
Step 7: Validate the data model .. 43
Step 8: Review the cost estimation .. 44

Objectives ... 44
Process ... 44

Step 9: Deploy the data model ... 45
Additional resources .. 47
Contributors ... 49
Document history .. 50
Glossary .. 51

... 51
A ... 52
B ... 55
C ... 57
D ... 60
E ... 64
F ... 66
G ... 68
H ... 69
I .. 70
L ... 72
M .. 74
O .. 78
P ... 80
Q .. 83
R ... 83
S ... 86
T ... 90
U ... 91

v

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

V ... 92
W .. 92
Z ... 93

vi

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Modeling data with Amazon DynamoDB

Process, templates, and best practices

Amazon Web Services (contributors)

December 2023 (document history)

NoSQL databases provide flexible schemas for building modern applications. They are widely
recognized for their ease of development, functionality, and performance at scale. Amazon
DynamoDB provides fast and predictable performance with seamless scalability for NoSQL
databases in the Amazon Web Services (AWS) Cloud. As a fully managed database service,
DynamoDB helps you offload the administrative burdens of operating and scaling a distributed
database. You don't have to worry about hardware provisioning, setup and configuration,
replication, software patching, or cluster scaling.

NoSQL schema design requires a different approach from traditional relational database
management system (RDBMS) design. RDBMS data model focuses on the structure of data
and its relationships with other data. NoSQL data modeling focuses on access patterns, or
how the application is going to consume the data, so it stores the data in a way that supports
straightforward query operations. For an RDBMS such as Microsoft SQL Server or IBM Db2, you can
create a normalized data model without thinking much about access patterns. You can extend the
data model to support your patterns and queries later.

This guide presents a data modeling process for using DynamoDB that provides functional
requirements, performance, and effective costs. The guide is for database engineers who are
planning to use DynamoDB as the operational database for their applications that are running on
AWS. AWS Professional Services has used the recommended process to help enterprise companies
with DynamoDB data modeling for different use cases and workloads.

1

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Data-modeling process flow

We recommend the following process when modeling data using Amazon DynamoDB. The steps
are discussed in detail later in this guide.

RACI matrix

Some organizations use a responsibility assignment matrix (also known as a RACI matrix) to
describe the various roles involved in one specific project or business process. This guide presents
a suggested RACI matrix that could help your organization identify the right people and right
responsibilities for the DynamoDB data modeling process. For each step in the process, it lists the
stakeholders and their involvement:

• R – responsible for completing the step

• A – accountable for approving and signing off on the work

RACI matrix 2

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

• C – consulted to provide input for a task

• I – informed of progress, but not directly involved in the task

Depending on the structure of your organization and project team, the roles in the following
RACI matrix can be performed by the same stakeholder. In some situations, stakeholders are both
responsible and accountable for specific steps. For example, database engineers can be responsible
for both creating and approving the data model, because this is their domain area.

Process
step

Business
user

Business
analyst

Solutions
architect

Database
engineer

Applicati
on
developer

DevOps
engineer

1. Identify
the use
cases and
logical
data
model

C R/A I R

2. Create a
prelimina
ry cost
estimation

C A I R

3. Identify
your data
access
patterns

C A I R

4. Identify
the
technical
requireme
nts

C C A R

5. Create
the

I I I R/A

RACI matrix 3

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Process
step

Business
user

Business
analyst

Solutions
architect

Database
engineer

Applicati
on
developer

DevOps
engineer

DynamoDB
data
model

6. Create
the data
queries

I I I R/A R

7. Validate
the data
model

A R I C

8. Review
the cost
estimation

C A I R

9. Deploy
the
DynamoDB
data
model

I I C C R/A

RACI matrix 4

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Data-modeling process steps
This section details each step of the recommended data modeling process for Amazon DynamoDB.

Topics

• Step 1. Identify the use cases and logical data model

• Step 2. Create a preliminary cost estimation

• Step 3. Identify your data access patterns

• Step 4. Identify the technical requirements

• Step 5. Create the DynamoDB data model

• Step 6. Create the data queries

• Step 7. Validate the data model

• Step 8. Review the cost estimation

• Step 9. Deploy the data model

Step 1. Identify the use cases and logical data model

Objectives

• Gather the business needs and use cases that require a NoSQL database.

• Define the logical data model by using an entity-relationship (ER) diagram.

Process

• Business analysts interview business users to identify the use cases and the expected outcomes.

• Database engineer creates the conceptual data model.

• Database engineer creates the logical data model.

• Database engineer gathers information about item size, data volume, and expected read and
write throughput.

Tools and resources

• Business requirements assessment (see template)

Step 1. Identify the use cases and logical data model 5

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

• Access patterns matrix (see template)

• Your preferred tool for creating diagrams

RACI

Business
user

Business
analyst

Solutions
architect

Database
engineer

Application
developer

DevOps
engineer

C R/A I R

Outputs

• Documented use cases and business requirements

• Logical data model (ER diagram)

Step 2. Create a preliminary cost estimation

Objective

• Develop a preliminary cost estimation for DynamoDB.

Process

• Database engineer creates the initial cost analysis using available information and the examples
presented on the DynamoDB pricing page.

• Create a cost estimate for on-demand capacity (see example).

• Create a cost estimate for provisioned capacity (see example).

• For the provisioned capacity model, get the estimate cost from the calculator and apply
discount for reserved capacity.

• Compare the estimated costs of the two capacity models.

• Create an estimation for all the environments (Dev, Prod, QA).

• Business analyst reviews and approves or rejects the preliminary cost estimate.

RACI 6

https://aws.eu/dynamodb/pricing/
https://aws.amazon.com/dynamodb/pricing/on-demand/
https://aws.amazon.com/dynamodb/pricing/provisioned/

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Tools and resources

• AWS Pricing Calculator

RACI

Business
user

Business
analyst

Solutions
architect

Database
engineer

Application
developer

DevOps
engineer

C A I R

Outputs

• Preliminary cost estimation

Step 3. Identify your data access patterns

Access patterns or query patterns define how the users and the system access the data to satisfy
business needs.

Objective

• Document the data access patterns.

Process

• Database engineer and business analyst interview the end users to identify how data will be
queried using the data-access patterns matrix template.

• For new applications, they review user stories about activities and objectives. They document
the use cases and analyze the access patterns that the use cases require.

• For existing applications, they analyze query logs to find out how people are currently using
the system and to identify the key access patterns.

• Database engineer identifies the following properties of the access patterns:

Tools and resources 7

https://calculator.aws/#/

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

• Data size: Knowing how much data will be stored and requested at one time helps determine
the most effective way to partition the data (see blog post).

• Data shape: Instead of reshaping data when a query is processed (as an RDBMS system does),
a NoSQL database organizes data so that its shape in the database corresponds with what will
be queried. This is a key factor in increasing speed and scalability.

• Data velocity: DynamoDB scales by increasing the number of physical partitions that are
available to process queries, and by efficiently distributing data across those partitions.
Knowing the peak query loads in advance might help determine how to partition data to best
use I/O capacity.

• Business user prioritizes the access or query patterns.

• Priority queries usually are the most used or most relevant queries. It is also important to
identify queries that require lower response latency.

Tools and resources

• Access patterns matrix (see template)

• Choosing the Right DynamoDB Partition Key (AWS Database blog)

• NoSQL design for DynamoDB (DynamoDB documentation)

RACI

Business
user

Business
analyst

Solutions
architect

Database
engineer

Application
developer

DevOps
engineer

C A I R

Outputs

• Data-access patterns matrix

Tools and resources 8

https://aws.amazon.com/blogs/database/choosing-the-right-dynamodb-partition-key/
https://aws.amazon.com/blogs/database/choosing-the-right-dynamodb-partition-key/
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-general-nosql-design.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Example

Access
pattern

Priority Read or
write

Descripti
on

Type
(single
item,
multiple
items, or
all)

Key
attribute

Filters Result
ordering

Create
user
profile

High Write User
creates
a new
profile

Single
item

Username N/A N/A

Update
user
profile

Medium Write User
updates
their
profile

Single
item

Username Username
= current
user

N/A

Step 4. Identify the technical requirements

Objective

• Gather the technical requirements for the DynamoDB database.

Process

• Business analysts interview the business user and DevOps team to gather the technical
requirements by using the assessment questionnaire.

Tools and resources

• Technical requirements assessment (see example questionnaire)

Example 9

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

RACI

Business
user

Business
analyst

Solutions
architect

Database
engineer

Application
developer

DevOps
engineer

C C A R

Outputs

• Technical requirements document

Step 5. Create the DynamoDB data model

Objective

• Create the DynamoDB data model.

Process

• Database engineer identifies how many tables will be required for each use case. We recommend
maintaining as few tables as possible in a DynamoDB application.

• Based on the most common access patterns, identify the primary key that can be one of two
types: a primary key with a partition key that identifies data, or a primary key with a partition
key and a sort key. A sort key is a secondary key for grouping and organizing data so it can be
queried within a partition efficiently. You can use sort keys to define hierarchical relationships in
your data that you can query at any level of the hierarchy (see blog post).

• Partition key design

• Define the partition key and evaluate its distribution.

• Identify the need for write sharding to distribute workloads evenly.

• Sort key design

• Identify the sort key.

• Identify the need for a composite sort key.

• Identify the need for version control.
RACI 10

https://aws.amazon.com/blogs/database/choosing-the-right-dynamodb-partition-key/
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-partition-key-sharding.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

• Based on the access patterns, identify the secondary indexes to satisfy the query requirements.

• Identify the need for local secondary indexes (LSIs). These are indexes that have the same
partition key as the base table, but a different sort key.

• For tables with LSIs, there is a 10 GB size limit per partition key value. A table with LSIs can
store any number of items, as long as the total size for any one partition key value does not
exceed 10 GB.

• Identify the need for global secondary indexes (GSIs). These are indexes that have a partition
key and a sort key that can be different from those on the base table (see blog post).

• Define the index projections. Consider projecting fewer attributes to minimize the size of items
written to the index. In this step, you should determine whether you want to use the following:

• Sparse indexes

• Materialized aggregation queries

• GSI overloading

• GSI sharding

• An eventually consistent replica using GSI

• Database engineer determines whether the data will include large items. If so, they design the
solution by using compression or by storing data in Amazon Simple Storage Service (Amazon S3).

• Database engineer determines whether time series data will be needed. If so, they use the time
series design pattern to model the data.

• Database engineer determines whether the ER model includes many-to-many relationships. If so,
they use an adjacency list design pattern to model the data.

Tools and resources

• NoSQL Workbench for Amazon DynamoDB — Provides data modeling, data visualization, and
query development and testing features to help you design your DynamoDB database

• NoSQL design for DynamoDB (DynamoDB documentation)

• Choosing the Right DynamoDB Partition Key (AWS Database blog)

• Best practices for using secondary indexes in DynamoDB (DynamoDB documentation)

• How to design Amazon DynamoDB global secondary indexes (AWS Database blog)

Tools and resources 11

https://docs.aws.eu/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/GSI.html
https://aws.amazon.com/blogs/database/how-to-design-amazon-dynamodb-global-secondary-indexes/
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-indexes-general-sparse-indexes.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-gsi-aggregation.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-gsi-overloading.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-indexes-gsi-sharding.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-indexes-gsi-replica.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-use-s3-too.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-time-series.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-time-series.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-adjacency-graphs.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/workbench.settingup.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-general-nosql-design.html
https://aws.amazon.com/blogs/database/choosing-the-right-dynamodb-partition-key/
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-indexes.html
https://aws.amazon.com/blogs/database/how-to-design-amazon-dynamodb-global-secondary-indexes/

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

RACI

Business
user

Business
analyst

Solutions
architect

Database
engineer

Application
developer

DevOps
engineer

I I I R/A

Outputs

• DynamoDB table schema that satisfies your access patterns and requirements

Example

The following screenshot shows NoSQL Workbench.

RACI 12

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Step 6. Create the data queries

Objective

• Create the main queries to validate the data model.

Process

• Database engineer manually creates a DynamoDB table in the AWS Region or on their computer
(DynamoDB Local).

• Database engineer adds sample data to the DynamoDB table.

• Database engineer builds facets using the NoSQL Workbench for Amazon DynamoDB or the AWS
SDK for Java or Python to build sample queries (see blog post).

Facets are like a view of the DynamoDB table.

• Database engineer and cloud developer build sample queries by using the AWS Command Line
Interface (AWS CLI) or AWS SDK for the preferred language.

Tools and resources

• An active AWS account, to gain access to the DynamoDB console

• DynamoDB Local (optional), if you want to build the database on your computer without
accessing the DynamoDB web service

• NoSQL Workbench for Amazon DynamoDB (download and documentation)

• AWS SDK in your choice of language (JavaScript, Python, PHP, .NET, Ruby, Java, Go, Node.js, C++,
and SAP ABAP)

RACI

Business
user

Business
analyst

Solutions
architect

Database
engineer

Application
developer

DevOps
engineer

I I I R/A R

Step 6. Create the data queries 13

https://medium.com/@synchrophoto/facets-in-nosql-workbench-for-amazon-dynamodb-dadc8267523b
https://docs.aws.eu/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/workbench.settingup.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/GettingStarted.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Outputs

• Code to query the DynamoDB table

Examples

• DynamoDB examples using the AWS SDK for Java

• Python examples

• JavaScript examples

Step 7. Validate the data model

Objective

• Ensure that the data model will satisfy your requirements.

Process

• Database engineer populates the DynamoDB table with sample data.

• Database engineer runs the code to query the DynamoDB table.

• Database engineer collects the query results.

• Database engineer collects the query performance metrics.

• Business user validates that query results satisfy business needs.

• Business analysts validate the technical requirements.

Tools and resources

• An active AWS account, to gain access to the DynamoDB console

• DynamoDB Local (optional), if you want to build the database on your computer without
accessing the DynamoDB web service

• AWS SDK in your choice of language

Outputs 14

https://docs.aws.eu/sdk-for-java/v2/developer-guide/examples-dynamodb.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/dynamodb.html
https://docs.aws.eu/sdk-for-javascript/v2/developer-guide/dynamodb-examples.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/GettingStarted.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

RACI

Business
user

Business
analyst

Solutions
architect

Database
engineer

Application
developer

DevOps
engineer

A R I C

Outputs

• Approved data model

Step 8. Review the cost estimation

Objectives

• Define the capacity model and estimate DynamoDB costs to refine the cost estimation from step
2.

• Get the final financial approval from the business analyst and stakeholders.

Process

• Database engineer identifies the data volume estimate.

• Database engineer identifies the data transfer requirements.

• Database engineer defines the required read and write capacity units.

• Business analyst decides between on-demand and provisioned capacity models.

• Database engineer identifies the need for DynamoDB auto scaling.

• Database engineer inputs the parameters in the Simple Monthly Calculator tool.

• Database engineer presents the final price estimation to business stakeholders.

• Business analyst and stakeholders approve or reject the solution.

Tools and resources

• AWS Pricing Calculator

RACI 15

https://docs.aws.eu/amazondynamodb/latest/developerguide/HowItWorks.ReadWriteCapacityMode.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/AutoScaling.html
https://calculator.aws/#/

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

RACI

Business
user

Business
analyst

Solutions
architect

Database
engineer

Application
developer

DevOps
engineer

C A I R

Outputs

• Capacity model

• Revised cost estimation

Step 9. Deploy the data model

Objective

• Deploy the DynamoDB table (or tables) to the AWS Region.

Process

• DevOps architect creates an CloudFormation template or other infrastructure as code (IaC) tool
for the DynamoDB table (or tables). CloudFormation provides an automated way to provision
and configure your tables and associated resources.

Tools and resources

• CloudFormation

RACI

Business
user

Business
analyst

Solutions
architect

Database
engineer

Application
developer

DevOps
engineer

I I C C R/A

RACI 16

https://docs.aws.eu/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Outputs

• AWS CloudFormation template

Example

mySecondDDBTable:
 Type: AWS::DynamoDB::
 Table DependsOn: "myFirstDDBTable"
 Properties:
 AttributeDefinitions:
 - AttributeName: "ArtistId"
 AttributeType: "S"
 - AttributeName: "Concert"
 AttributeType: "S"
 - AttributeName: "TicketSales"
 AttributeType: "S"
 KeySchema:
 - AttributeName: "ArtistId"
 KeyType: "HASH"
 - AttributeName: "Concert"
 KeyType: "RANGE"
 ProvisionedThroughput:
 ReadCapacityUnits:
 Ref: "ReadCapacityUnits"
 WriteCapacityUnits:
 Ref: "WriteCapacityUnits"
 GlobalSecondaryIndexes:
 - IndexName: "myGSI"
 KeySchema:
 - AttributeName: "TicketSales"
 KeyType: "HASH"
 Projection:
 ProjectionType: "KEYS_ONLY"
 ProvisionedThroughput:
 ReadCapacityUnits:
 Ref: "ReadCapacityUnits"
 WriteCapacityUnits:
 Ref: "WriteCapacityUnits"
 Tags:
 - Key: mykey

Outputs 17

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

 Value: myvalue

Example 18

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Templates

The templates provided in this section are based on the Modeling Game Player Data with Amazon
DynamoDB on the AWS website.

Note

The tables in this section use MM as an abbreviation for million, and K as an abbreviation
for thousand.

Topics

• Business-requirements assessment template

• Technical-requirements assessment template

• Access-patterns template

Business-requirements assessment template

Provide a description for the use case:

Description

Imagine that you are building an online multiplayer game. In your game, groups of 50
players join a session to play a game, which typically takes around 30 minutes to play.
During the game, you have to update a specific player’s record to indicate the amount of
time the player has been playing, their statistics, or whether they won the game. Users
want to see earlier games they’ve played, either to view the games’ winners or to watch a
replay of each game’s action.

Provide information about your users:

User Description Expected number

Game player Online game player. 1 MM

Business-requirements assessment template 19

https://aws.amazon.com/getting-started/projects/data-modeling-gaming-app-with-dynamodb/
https://aws.amazon.com/getting-started/projects/data-modeling-gaming-app-with-dynamodb/

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Development team Internal team that will use the
game statistics to improve the

game experience.

100

Provide information about the sources of data and how data will be ingested:

Source Description User

Online game Game players will create
profiles and start new games.

Game player

Game app Game app will automatic
ally collect statistics about
the games, such as start and
end time, number of players,
position of each player, and
map for the game.

Provide information about how data will be consumed:

Consumer Description User

Online game Game players will view profiles
and review their game statistic
s.

Game player

Data analytics The game development team
will extract game statistic
s for data analysis and to
improve the user experience.
Data will be exported from
the data store and imported
into Amazon S3 to support
analytics through a Spark
application.

Development team

Business-requirements assessment template 20

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Provide a list of entities and how they are identified:

Entity name Description Identifier

Game Player Stores information such
as identification, address,
demographics, interests for
each user (gamer).

Username

Game Instance Provides information about
each game played, including
creator, start, end, and map
Yplayed.

Game ID

Game User Mapping Represents the many-to-many
relationships between users
and games.

Game ID AND Username

Create an ER model for the entities:

Provide high-level statistics about the entities:

Business-requirements assessment template 21

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Entity Name Estimated # of
records

Record size Notes

Game Player 1 MM < 1 KB The game platform
has about 1 MM users.

Game Instance 6 MM

(100,000K/day * 60
days)

< 1 KB On average, there are
100K games every
day. We need to store
the last 60 days.

Game User Mapping 300 MM

(6 MM games * 50
players)

< 1 KB On average, each
game has 50 players
that we need to store
information about.

Technical-requirements assessment template

Provide information about data ingestion types:

Data ingestion type Y/N Description Frequency

Application access Y

API gateway Y

Data streaming N

Batch process N

ETL N

Data import N

Time series N

Provide information about data consumption types:

Technical-requirements assessment template 22

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Data consumption
type

Y/N Description Frequency

Application access

API gateway

Data export

Data analytics

Data aggregation

Reporting

Search

Data streaming

ETL

Provide data volume estimates:

Entity name Estimated # of
records

Record size Data volume

Game Player 1 MM < 1 KB ~ 1 GB

 (1 MM * 1 KB)

Game Instance 6 MM

(100K/day * 60 days)

< 1 KB ~ 6 GB

 (6 MM * 1 KB)

Game User Mapping 300 MM

(6 MM games * 50
players)

< 1 KB ~ 300 GB

 (300 MM * 1 KB)

Technical-requirements assessment template 23

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Note

The period for data retention is 60 days. After 60 days, data must be stored in Amazon S3
for analytics, by using DynamoDB Time to Live (TTL) to automatically move data out of
DynamoDB to Amazon S3.

Answer these questions about time patterns:

• What time frame is the application available to the user (for example, 24/7 or 9 AM to 5 PM on
weekdays)?

• Is there a peak in usage during the day? How many hours? What is the percentage of application
usage?

Specify write throughput requirements:

Entity name Writes/day Hours/day Writes/second

Game Player 10,000 updates 18 < 1

Game Instance 300,000 18 < 5

Game User Mapping 1,800,000,000 18 ~ 27.777

Notes

Game Player write operations: 1 percent of users update their profiles every day, so we
expect 10,000 updates for 1,000,000 users.
Game Instance write operations: 100,000 games/day. For each game we have at least 3
write operations—at creation, start, and end—so the total is 300,000 write operations.
Game User Mapping write operations: 100,000 games/day for each game with 50 players.
The average game duration is 30 minutes, and the gamer position is updated every 5
seconds. We estimate an average of 360 updates per gamer, so the total is 100,000 * 50 *
360 = 1,800,000,000 write operations.

Specify read throughput requirements:

Technical-requirements assessment template 24

https://docs.aws.eu/amazondynamodb/latest/developerguide/TTL.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Entity name Reads / day Hours / day Reads/sec

Game Player 200,000 18 ~ 3

Game Instance 5,000,000 18 ~ 77

Game User Mapping 1,800,000,000 18 ~ 27.777

Notes

Game Player read operations: 20 percent of users start games, so 1 MM * 0.2 = 200,000.
Game Instance read operations: 100,000 games/day. For each game we have at least
1 read operation per player, and 50 players per game, so the total is 5,000,000 read
operations.
Game User Mapping read operations: 100,000 games/day for 50 players. The average
game duration is 30 minutes, and the gamer position is updated every 5 seconds. We
estimate an average of 360 updates per gamer, and each update requires a read operation,
so the total is 100,000 * 50 * 360 = 1,800,000,000 read operations.

Specify data access latency requirements:

Operation 99 percentiles Maximum latency

Read 30 ms 100 ms

Write 10 ms 50 ms

Specify data availability requirements:

Requirement Y/N Metric Notes

High availability Y 99.9%

RTO Y 1 hour Recovery time
objective

Technical-requirements assessment template 25

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

RPO Y 1 hour Recovery point
objective

Disaster recovery N

In-Region data
replication

N

Cross-Region data
replication

N 3 sec latency Which AWS Regions?

Specify security requirements:

Requirement Y/N Notes

Sensitive data store N Protected health information
(PHI), payment card industry
(PCI) information, personally
identifiable information (PII)?

Encryption at rest Y

Encryption in transit Y

Client-side encryption N

Any proprietary or third-
vendor encryption library

N

Data access logging N

Data access auditing N

Access-patterns template

Collect and document information about the access patterns for the use case by using the
following fields:

Access-patterns template 26

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Field Description

Access pattern Provide a name for the access pattern.

Description Provide a more detailed description of the
access pattern.

Priority Define a priority for the access pattern (high,
medium, or low). This defines the most
relevant access patterns for the application.

Read or write Is it a read access or write access pattern?

Type Does the pattern access a single item, multiple
items, or all items?

Filter Does the access pattern require any filter?

Sort Does the result require any sorting?

Template

Access
pattern

Descripti
on

Priority Read or
write

Type
(single
item,

multiple

items, or
all)

Key
attribute

 Filters Result
ordering

Create
user
profile

User
creates
a new
profile.

High Write Single
item

Username N/A N/A

Template 27

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Update
user
profile

User
updates
their
profile.

Medium Write Single
item

Username Username
= current
user

N/A

Get user
profile

User
reviews
their
profile.

High Read Single
item

Username Username
= current
user

N/A

Create a
game

User
creates
a new
game.

High Write Single
item

GameID N/A N/A

Find open
games

User
searches
for open
games.
Search
results
are
 sorted
by start
timestamp
in
descendin
g order.

High Read Multiple
items

 GameStatu
s = open

Start
timestamp
descenden
t

Template 28

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Find open
games by
map

User
searches
for open
games by
using a
specific
map
sorted
by start
timestamp
in
descendin
g

order.

Medium Read Multiple
items

 GameStatu
s = open
and Map
= XYZ

Start
timestamp
descenden
t

View
game

User
reviews
the
details of
a game.

High Read Single
item

GameID N/A N/A

View
users in a
game

User gets
a list of
all the
users in a
game.

Medium Read Multiple
items

 GameID
= XYZ

N/A

Join
user to a
game

User joins
an open
game.

High Write Single
item

GameID
and
Username

GameStatu
s = open

N/A

Start a
game

User
starts
a new
game.

High Write Single
item

GameID N/A N/A

Template 29

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Update
game for
user

Update
user
position
in the
game.

Medium Write Single
item

GameID
and
Username

N/A N/A

Update
game

Game
ends;
update
statistics.

Medium Write Single
item

GameID N/A N/A

Find all
past
games
for a user

List all
games
that
a user
played
ordered
by the
start
timestamp
of the
game.

Low Read Multiple
items

Username
and
GameID

Username
= current
user

Start
timestamp

Export
data
for data
analytics

Developme
nt team
will run a
batch job
to export
data to
Amazon
S3.

Low Read All N/A N/A N/A

Template 30

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Best practices

Consider using the following DynamoDB design best practices:

• Partition key design – Use a high-cardinality partition key to distribute load evenly.

• Adjacency list design pattern – Use this design pattern for managing one-to-many and many-to-
many relationships.

• Sparse index – Use sparse index for your global secondary indexes (GSIs). When you create a GSI,
you specify a partition key and optionally a sort key. Only items in the base table that contain a
corresponding GSI partition key appear in the sparse index. This helps to keep GSIs smaller.

• Index overloading – Use the same GSI for indexing various types of items.

• GSI write sharding – Shard wisely to distribute data across the partitions for efficient and faster
queries.

• Large items – Store only metadata inside the table, save the blob in Amazon S3, and keep the
reference in DynamoDB. Break large items into multiple items, and efficiently index by using sort
keys.

For more design best practices, see the Amazon DynamoDB documentation.

31

https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-partition-key-uniform-load.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-adjacency-graphs.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-indexes-general-sparse-indexes.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-gsi-overloading.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-indexes-gsi-sharding.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-use-s3-too.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/best-practices.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Example of hierarchical data modeling

The following sections use an example automotive company to show how you can use the data
modeling process steps to design a multi-level component-management system in DynamoDB.

Topics

• Step 1: Identify the use cases and logical data model

• Step 2: Create a preliminary cost estimation

• Step 3: Identify your data-access patterns

• Step 4: Identify the technical requirements

• Step 5: Create a DynamoDB data model

• Step 6: Create data queries

• Step 7: Validate the data model

• Step 8: Review the cost estimation

• Step 9: Deploy the data model

Step 1: Identify the use cases and logical data model

An automotive company wants to build a transactional component management system to
store and search for all of the available car parts and to build relationships between different
components and parts. For example, a car contains multiple batteries, each battery contains
multiple high-level modules, each module contains multiple cells, and each cell contains multiple
low-level components.

Generally, for building a hierarchical relationship model, a graph database such as Amazon
Neptune is a better choice. In some cases, however, Amazon DynamoDB is a better alternative for
hierarchical data modeling because of its flexibility, security, performance, and scale.

For example, you might build a system where 80–90 percent of the queries are transactional, where
DynamoDB fits well. In this example, the other 10–20 percent of queries are relational, where
a graph database such as Neptune fits better. In this case, including an additional database in
the architecture to fulfill only 10–20 percent of the queries could increase cost. It also adds the
operational burden of maintaining multiple systems and synchronizing the data. Instead, you can
model that 10–20 percent relational queries in DynamoDB.

Step 1: Identify the use cases and logical data model 32

https://docs.aws.eu/neptune/latest/userguide/intro.html
https://docs.aws.eu/neptune/latest/userguide/intro.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Diagramming an example tree for car components can help you map the relationship between
them. The following diagram shows a dependency graph with four levels. CM1 is the top-level
component for the example car itself. It has two subcomponents for two example batteries, CM2
and CM3. Each battery has two subcomponents, which are the modules. CM2 has modules CM4
and CM5, and CM3 has modules CM6 and CM7. Each module has several subcomponents, which
are the cells. The CM4 module has two cells, CM8 and CM9. CM5 has one cell, CM10. CM6 and CM7
don't have any associated cells yet.

This guide will use this tree and its component identifiers as a reference. A top component will
be referred to as a parent, and a subcomponent will be referred to as a child. For example, top
component CM1 is the parent of CM2 and CM3. CM2 is the parent of CM4 and CM5. This graphs the
parent-child relationships.

From the tree, you can see the complete dependency graph of a component. For example, CM8 is
dependent on CM4, which is dependent on CM2, which is dependent on CM1. The tree defines the
complete dependency graph as the path. A path describes two things:

• The dependency graph

• The position in the tree

Filling the templates for business requirements:

Provide information about your users:

Step 1: Identify the use cases and logical data model 33

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

User Description

Employee Internal employee of the automotive company
that needs information of cars and its
components

Provide information about the sources of data and how data will be ingested:

Source Description User

Management system System that will store all the
data related to available car
parts and their relationships
with other components and
parts.

Employee

Provide information about how data will be consumed:

Consumer Description User

Management system Retrieve all the immediate
child components for a parent
component ID.

Employee

Management system Retrieve a recursive list of
all child components for a
component ID.

Employee

Management system See the ancestors of a
component.

Employee

Step 1: Identify the use cases and logical data model 34

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Step 2: Create a preliminary cost estimation

It's important to calculate an estimation of the cost for all environments of your application so you
can check if the solution is financially viable. A best practice is to make a high-level estimation and
get approval from the business analyst before proceeding with the development and deployment.

• Database engineer creates the initial cost analysis using available information and the examples
presented on the DynamoDB pricing page.

• Create a cost estimate for on-demand capacity (see example).

• Create a cost estimate for provisioned capacity (see example).

• For the provisioned capacity model, get the estimated cost from the calculator, and apply
the discount for reserved capacity.

• Compare the estimated costs of the two capacity models.

• Create an estimation for all the environments (Dev, Prod, QA).

• Business analyst reviews and approves or rejects the preliminary cost estimate.

Using these reference values, you can create an estimated price to submit for approval. To create
the budget, you can use the DynamoDB pricing page and AWS Pricing Calculator.

Step 3: Identify your data-access patterns

This example use case has the following access patterns for managing relationships between
different car components.

Access
pattern

Priority Read or
write

Descripti
on

Type Filters Result
ordering

Immediate
child

High Read Retrieve
all the
immediate
child
component
s for a
parent

Multiple Component
ID

N/A

Step 2: Create a preliminary cost estimation 35

https://aws.eu/dynamodb/pricing/
https://aws.amazon.com/dynamodb/pricing/on-demand/
https://aws.amazon.com/dynamodb/pricing/provisioned/
http://aws.amazon.com/dynamodb/pricing/
https://calculator.aws/

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

component
ID.

All child
component
s

High Read Retrieve a
recursive
list of
all child
component
s for a
component
ID.

Multiple Component
ID

N/A

Ancestors High Read Retrieve
the
ancestors
of a
component
.

Multiple Component
ID

N/A

Step 4: Identify the technical requirements

This example doesn't have any specific technical requirements, which are outside the scope
of this example. In real cases, it's a best practice to complete this step and to validate that all
technical requirements are fulfilled before proceeding with development and deployment. You
can use the example questionnaire to complete this step in your business case. Additionally, we
recommend validating the DynamoDB service quotas to make sure that there are no hard limits in
your designed solution.

Step 5: Create a DynamoDB data model

Define the partition keys for your base table and global secondary indexes (GSIs):

• Following the key design best practices, use ComponentId as the partition key for the base table
in this example. Because it's unique, ComponentId can offer granularity. DynamoDB uses the
hash value of your partition key to determine the partition where the data is stored physically.
The unique component ID generates a different hash value, which can facilitate distribution of
data inside the table. You can query the base table by using a ComponentId partition key.

Step 4: Identify the technical requirements 36

https://docs.aws.eu/prescriptive-guidance/latest/dynamodb-data-modeling/template-tech-req.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ServiceQuotas.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

• To find immediate children of a component, create a GSI where ParentId is the partition key,
and ComponentId is the sort key. You can query this GSI by using ParentId as the partition
key.

• To find all recursive children of a component, create a GSI where GraphId is the partition key,
and Path is the sort key. You can query this GSI by using GraphId as the partition key and the
BEGINS_WITH(Path, "$path") operator on the sort key.

Partition key Sort Key Mapping attributes

Base table ComponentId ParentId, GraphId,
Path

GSI1 ParentId ComponentId

GSI2 GraphId Path ComponentId

Storing components in the table

The next step is to store each component in the DynamoDB base table. After you insert all the
components from the example tree, you get the following base table.

ComponentId ParentId GraphId Path

CM1

CM1#1

CM1

CM2

CM1

CM1#1

CM1|CM2

CM3

CM1

CM1#1

CM1|CM3

CM4

CM2

CM1#1

CM1|CM2|CM4

Storing components in the table 37

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

CM5

CM2

CM1#1

CM1|CM2|CM5

CM6

CM3

CM1#1

CM1|CM3|CM6

CM7

CM3

CM1#1

CM1|CM3|CM7

CM8

CM4

CM1#1

CM1|CM2|CM4|CM8

CM9

CM4

CM1#1

CM1|CM2|CM4|CM9

CM10

CM5

CM1#1

CM1|CM2|CM5|CM10

The GSI1 index

To check all immediate children of a component, you create an index that uses ParentId as a
partition key and ComponentId as a sort key. The following pivot table represents the GSI1 index.
You can use this index to retrieve all immediate child components by using a parent component
ID. For example, you can find out how many batteries are available in a car (CM1) or which cells are
available in a module (CM4).

ParentId ComponentId

CM1 CM2

CM3

CM2 CM4

The GSI1 index 38

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

CM5

CM3 CM6

CM7

CM4 CM8

CM9

CM5 CM10

The GSI2 index

The following pivot table represents the GSI2 index. It's configured using GraphId as a partition
key and Path as a sort key. Using GraphId and the begins_with operation on the sort key
(Path), you can find the full lineage of a component in a tree.

GraphId Path ComponentId

CM1#1 CM1

CM1|CM2

CM1|CM3

CM1|CM2|CM4

CM1|CM2|CM5

CM1|CM2|CM4|CM8

CM1|CM2|CM4|CM9

CM1|CM2|CM5|CM10

CM1|CM3|CM6

CM1|CM3|CM7

CM1

CM2

CM3

CM4

CM5

CM8

CM9

CM10

CM6

CM7

The GSI2 index 39

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Step 6: Create data queries

After you define your access patterns and design your data model, you can query hierarchical data
in the DynamoDB database. As a best practice to save on costs and help ensure performance, the
following examples use only the query operation without Scan.

• Find ancestors of a component.

To find the ancestors (parent, grandparent, great-grandparent, and so on) of the CM8
component, query the base table using ComponentId = "CM8". The query will return the
following record.

To reduce the size of the result data, you can use a projection expression to return only the Path
attribute.

ComponentId ParentId GraphId Path

CM8 CM4 CM1#1 CM1|CM2|CM4|CM8

Path

CM1|CM2|CM4|CM8

Now, split the path using the pipe ("|"), and take the first N-1 components to get ancestors.

Query result: The ancestors of CM8 are CM1, CM2, CM4.

• Find immediate children of a component.

To get all immediate child, or one-level downstream, components for the CM2 component, query
GSI1 using ParentId = "CM2". The query will return the following record.

ParentId ComponentId

CM2 CM4

CM5

Step 6: Create data queries 40

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

• Find all downstream child components using a top-level component.

To get all child, or downstream, components for top-level component CM1, query GSI2 using
GraphId = "CM1#1" and begins_with("Path", "CM1|"), and use a projection expression
with ComponentId. It will return all the components related to that tree.

This example has a single tree, with CM1 as the top component. In reality, you could have
millions of top-level components in the same table.

GraphId ComponentId

CM1#1

CM2

CM3

CM4

CM5

CM8

CM9

CM10

CM6

CM7

• Find all downstream child components using a middle-level component.

To get all child, or downstream, components recursively for component CM2, you have two
options. You can query recursively level by level, or you can query the GSI2 index.

• Query GSI1, level by level, recursively, until reaching the last level of child components.

1. Query GSI1 using ParentId = "CM2". It will return the following record.

ParentId ComponentId

CM2 CM4

Step 6: Create data queries 41

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

CM5

2. Again, query GSI1 using ParentId = "CM4". It will return the following record.

ParentId ComponentId

CM4 CM8

CM9

3. Again, query GSI1 using ParentId = "CM5". It will return the following record.

Continue the loop: Query for each ComponentId until you reach the last level. When a
query using ParentId = "<ComponentId>" doesn't return any results, the previous
result was from the last level of the tree.

ParentId ComponentId

CM5 CM10

4. Merge all results.

result=[CM4, CM5] + [CM8, CM9] + [CM10]

 =[CM4, CM5, CM8, CM9, CM10]

• Query GSI2, which stores a hierarchical tree for a top-level component (a car, or CM1).

1. First, find the top-level component or top ancestor and Path of CM2. For that, query
the base table by using ComponentId = "CM2" to find the path of that component in
the hierarchical tree. Select the GraphId and Path attributes. The query will return the
following record.

GraphId Path

CM1#1 CM1|CM2

2. Query GSI2 by using GraphId = "CM1#1" AND BEGINS_WITH("Path", "CM1|CM2|").
The query will return the following results.

Step 6: Create data queries 42

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

GraphId Path ComponentId

CM1#1 CM1|CM2|CM4

CM1|CM2|CM5

CM1|CM2|CM4|CM8

CM1|CM2|CM4|CM9

CM1|CM2|CM5|CM10

CM4

CM5

CM8

CM9

CM10

3. Select the ComponentId attribute to return all the child components for CM2.

Step 7: Validate the data model

In this step, the business user validates the query results and checks whether they satisfy business
needs. You can use the following table to check the access patterns against the requirements of the
user.

Question Base table / GSI Query

As a user, I want to retrieve
all the immediate child
components for a parent
component ID.

GSI1 ParentId = "<Compone
ntId>"

(Find immediate children of a
component.)

As a user, I want to retrieve
a recursive list of all child
components for a component
ID.

GSI1 or GSI2 GSI1: ParentId =
"<ComponentId>"

or

GSI2: GraphId =
"<TopLevelComponen
tId>#N" AND BEGINS_WI
TH("Path", "<PATH_OF
_Component>")

Step 7: Validate the data model 43

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

(Find all down-level child
components using a top- level
component. Find all down-
level child components using
a middle-level component.)

As a user, I want to see the
ancestors of a component.

Base table ComponentId =
"<ComponentId>" , then
select the Path attribute.

(Find ancestors of a
component.)

You can also implement a script (test) in any programming language to query DynamoDB directly
and compare the results with the expected results.

Step 8: Review the cost estimation

Review and refine the cost estimation again. Additionally, it's a good practice to validate it with
business stakeholders and get approval to move to the next step.

Objectives

• Define the capacity model, and estimate DynamoDB costs to refine the cost estimation from step
2.

• Get the final financial approval from the business analyst and stakeholders.

Process

• Database engineer identifies the data volume estimate.

• Database engineer identifies the data transfer requirements.

• Database engineer defines the required read and write capacity units.

• Business analyst decides between on-demand and provisioned capacity models.

• Database engineer identifies the need for DynamoDB auto scaling.

• Database engineer inputs the parameters in the AWS Pricing Calculator.

Step 8: Review the cost estimation 44

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadWriteCapacityMode.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

• Database engineer presents the final price estimation to business stakeholders.

• Business analyst and stakeholders approve or reject the solution.

Step 9: Deploy the data model

For this specific example, the deployment of the model was done using NoSQL Workbench, an
application for modern database development and operation. Using this tool, you have the option
of creating a data model, uploading data, and deploying it directly to your AWS account. If you
want to implement this example, you can use the following AWS CloudFormation template, which
was generated by NoSQL Workbench.

AWSTemplateFormatVersion: 2010-09-09
Resources:
 Components:
 Type: 'AWS::DynamoDB::Table'
 Properties:
 KeySchema:
 - AttributeName: ComponentId
 KeyType: HASH
 AttributeDefinitions:
 - AttributeName: ComponentId
 AttributeType: S
 - AttributeName: ParentId
 AttributeType: S
 - AttributeName: GraphId
 AttributeType: S
 - AttributeName: Path
 AttributeType: S
 GlobalSecondaryIndexes:
 - IndexName: GS1
 KeySchema:
 - AttributeName: ParentId
 KeyType: HASH
 - AttributeName: ComponentId
 KeyType: RANGE
 Projection:
 ProjectionType: KEYS_ONLY
 - IndexName: GSI2
 KeySchema:
 - AttributeName: GraphId
 KeyType: HASH

Step 9: Deploy the data model 45

https://docs.aws.eu/amazondynamodb/latest/developerguide/workbench.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

 - AttributeName: Path
 KeyType: RANGE
 Projection:
 ProjectionType: INCLUDE
 NonKeyAttributes:
 - ComponentId
 BillingMode: PAY_PER_REQUEST
 TableName: Components

Step 9: Deploy the data model 46

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Additional resources

More information about DynamoDB

• DynamoDB pricing

• DynamoDB documentation

• NoSQL design for DynamoDB

• Write sharding

• Local secondary indexes (LSIs)

• Global secondary indexes (GSIs)

• Overloading GSIs

• GSI sharding

• Using GSIs to create an eventually consistent replica

• Sparse indexes

• Materialized aggregation queries

• Time series design pattern

• Adjacency list design pattern

• On-demand and provisioned capacity models

• DynamoDB auto scaling

• DynamoDB Time to Live (TTL)

• Modeling game player data with DynamoDB (lab)

AWS services

• AWS CloudFormation

• Amazon S3

Tools

• AWS Pricing Calculator

• NoSQL Workbench for DynamoDB

• DynamoDB Local

47

https://aws.eu/dynamodb/pricing/
https://docs.aws.eu/dynamodb/
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-general-nosql-design.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-partition-key-sharding.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-gsi-overloading.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-indexes-gsi-sharding.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-indexes-gsi-replica.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-indexes-general-sparse-indexes.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-gsi-aggregation.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-time-series.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-adjacency-graphs.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/HowItWorks.ReadWriteCapacityMode.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/AutoScaling.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/TTL.html
https://aws.amazon.com/tutorials/data-modeling-gaming-app-with-dynamodb/
https://docs.aws.eu/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html
https://docs.aws.eu/AmazonS3/latest/gsg/GetStartedWithS3.html
https://calculator.aws/#/
https://docs.aws.eu/amazondynamodb/latest/developerguide/workbench.settingup.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/DynamoDBLocal.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

• DynamoDB and AWS SDKs

Best practices

• Best practices for designing and architecting with DynamoDB (DynamoDB documentation)

• Best practices for using secondary indexes (DynamoDB documentation)

• Best practices for storing large items and attributes (DynamoDB documentation)

• Choosing the right DynamoDB partition key (AWS Database blog)

• How to design Amazon DynamoDBglobal secondary indexes (AWS Database blog)

• What are facets in NoSQL Workbench for Amazon DynamoDB (Medium website)

AWS general resources

• AWS Prescriptive Guidance website

• AWS documentation

• AWS general reference

48

https://docs.aws.eu/amazondynamodb/latest/developerguide/GettingStarted.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/best-practices.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-indexes.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-use-s3-too.html
https://aws.amazon.com/blogs/database/choosing-the-right-dynamodb-partition-key/
https://aws.amazon.com/blogs/database/how-to-design-amazon-dynamodb-global-secondary-indexes/
https://medium.com/@synchrophoto/facets-in-nosql-workbench-for-amazon-dynamodb-dadc8267523b
https://docs.aws.eu/prescriptive-guidance/
https://docs.aws.amazon.com/
https://docs.aws.eu/general/latest/gr/

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Contributors

Contributors to this guide include:

• Camilo Gonzalez, Senior Data Architect, AWS

• Moinul Al-Mamun, Senior Big Data Architect, AWS

• Santiago Segura, Professional Services Consultant, AWS

• Satheish Kumar Chandraprakasam, Cloud Application Architect, AWS

49

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Document history

The following table describes significant changes to this guide. If you want to be notified about
future updates, you can subscribe to an RSS feed.

Change Description Date

Added a Best practices section
and an example for hierarchi
cal data modeling.

We added a summary of
DynamoDB best practices and
a step-by-step example of
designing and validating a
hierarchical model.

December 5, 2023

Initial publication — October 26, 2020

50

https://docs.aws.eu/prescriptive-guidance/latest/dynamodb-data-modeling/dynamodb-data-modeling.rss
https://docs.aws.amazon.com/prescriptive-guidance/latest/dynamodb-data-modeling/best-practices.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/dynamodb-data-modeling/hierarchical-data-modeling.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

AWS Prescriptive Guidance glossary

The following are commonly used terms in strategies, guides, and patterns provided by AWS
Prescriptive Guidance. To suggest entries, please use the Provide feedback link at the end of the
glossary.

Numbers

7 Rs

Seven common migration strategies for moving applications to the cloud. These strategies build
upon the 5 Rs that Gartner identified in 2011 and consist of the following:

• Refactor/re-architect – Move an application and modify its architecture by taking full
advantage of cloud-native features to improve agility, performance, and scalability. This
typically involves porting the operating system and database. Example: Migrate your on-
premises Oracle database to the Amazon Aurora PostgreSQL-Compatible Edition.

• Replatform (lift and reshape) – Move an application to the cloud, and introduce some level
of optimization to take advantage of cloud capabilities. Example: Migrate your on-premises
Oracle database to Amazon Relational Database Service (Amazon RDS) for Oracle in the AWS
Cloud.

• Repurchase (drop and shop) – Switch to a different product, typically by moving from
a traditional license to a SaaS model. Example: Migrate your customer relationship
management (CRM) system to Salesforce.com.

• Rehost (lift and shift) – Move an application to the cloud without making any changes to
take advantage of cloud capabilities. Example: Migrate your on-premises Oracle database to
Oracle on an EC2 instance in the AWS Cloud.

• Relocate (hypervisor-level lift and shift) – Move infrastructure to the cloud without
purchasing new hardware, rewriting applications, or modifying your existing operations.
You migrate servers from an on-premises platform to a cloud service for the same platform.
Example: Migrate a Microsoft Hyper-V application to AWS.

• Retain (revisit) – Keep applications in your source environment. These might include
applications that require major refactoring, and you want to postpone that work until a later
time, and legacy applications that you want to retain, because there’s no business justification
for migrating them.

51

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

• Retire – Decommission or remove applications that are no longer needed in your source
environment.

A

ABAC

See attribute-based access control.

abstracted services

See managed services.

ACID

See atomicity, consistency, isolation, durability.

active-active migration

A database migration method in which the source and target databases are kept in sync (by
using a bidirectional replication tool or dual write operations), and both databases handle
transactions from connecting applications during migration. This method supports migration in
small, controlled batches instead of requiring a one-time cutover. It’s more flexible but requires
more work than active-passive migration.

active-passive migration

A database migration method in which the source and target databases are kept in sync, but
only the source database handles transactions from connecting applications while data is
replicated to the target database. The target database doesn’t accept any transactions during
migration.

aggregate function

A SQL function that operates on a group of rows and calculates a single return value for the
group. Examples of aggregate functions include SUM and MAX.

AI

See artificial intelligence.

AIOps

See artificial intelligence operations.

A 52

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

anonymization

The process of permanently deleting personal information in a dataset. Anonymization can help
protect personal privacy. Anonymized data is no longer considered to be personal data.

anti-pattern

A frequently used solution for a recurring issue where the solution is counter-productive,
ineffective, or less effective than an alternative.

application control

A security approach that allows the use of only approved applications in order to help protect a
system from malware.

application portfolio

A collection of detailed information about each application used by an organization, including
the cost to build and maintain the application, and its business value. This information is key to
the portfolio discovery and analysis process and helps identify and prioritize the applications to
be migrated, modernized, and optimized.

artificial intelligence (AI)

The field of computer science that is dedicated to using computing technologies to perform
cognitive functions that are typically associated with humans, such as learning, solving
problems, and recognizing patterns. For more information, see What is Artificial Intelligence?

artificial intelligence operations (AIOps)

The process of using machine learning techniques to solve operational problems, reduce
operational incidents and human intervention, and increase service quality. For more
information about how AIOps is used in the AWS migration strategy, see the operations
integration guide.

asymmetric encryption

An encryption algorithm that uses a pair of keys, a public key for encryption and a private key
for decryption. You can share the public key because it isn’t used for decryption, but access to
the private key should be highly restricted.

atomicity, consistency, isolation, durability (ACID)

A set of software properties that guarantee the data validity and operational reliability of a
database, even in the case of errors, power failures, or other problems.

A 53

https://docs.aws.eu/prescriptive-guidance/latest/application-portfolio-assessment-guide/introduction.html
https://aws.amazon.com/what-is/artificial-intelligence/
https://docs.aws.eu/prescriptive-guidance/latest/migration-operations-integration/aiops.html
https://docs.aws.eu/prescriptive-guidance/latest/migration-operations-integration/aiops.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

attribute-based access control (ABAC)

The practice of creating fine-grained permissions based on user attributes, such as department,
job role, and team name. For more information, see ABAC for AWS in the AWS Identity and
Access Management (IAM) documentation.

authoritative data source

A location where you store the primary version of data, which is considered to be the most
reliable source of information. You can copy data from the authoritative data source to other
locations for the purposes of processing or modifying the data, such as anonymizing, redacting,
or pseudonymizing it.

Availability Zone

A distinct location within an AWS Region that is insulated from failures in other Availability
Zones and provides inexpensive, low-latency network connectivity to other Availability Zones in
the same Region.

AWS Cloud Adoption Framework (AWS CAF)

A framework of guidelines and best practices from AWS to help organizations develop an
efficient and effective plan to move successfully to the cloud. AWS CAF organizes guidance
into six focus areas called perspectives: business, people, governance, platform, security,
and operations. The business, people, and governance perspectives focus on business skills
and processes; the platform, security, and operations perspectives focus on technical skills
and processes. For example, the people perspective targets stakeholders who handle human
resources (HR), staffing functions, and people management. For this perspective, AWS CAF
provides guidance for people development, training, and communications to help ready the
organization for successful cloud adoption. For more information, see the AWS CAF website and
the AWS CAF whitepaper.

AWS Workload Qualification Framework (AWS WQF)

A tool that evaluates database migration workloads, recommends migration strategies, and
provides work estimates. AWS WQF is included with AWS Schema Conversion Tool (AWS SCT). It
analyzes database schemas and code objects, application code, dependencies, and performance
characteristics, and provides assessment reports.

A 54

https://docs.aws.eu/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://aws.amazon.com/cloud-adoption-framework/
https://d1.awsstatic.com/whitepapers/aws_cloud_adoption_framework.pdf

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

B

bad bot

A bot that is intended to disrupt or cause harm to individuals or organizations.

BCP

See business continuity planning.

behavior graph

A unified, interactive view of resource behavior and interactions over time. You can use a
behavior graph with Amazon Detective to examine failed logon attempts, suspicious API
calls, and similar actions. For more information, see Data in a behavior graph in the Detective
documentation.

big-endian system

A system that stores the most significant byte first. See also endianness.

binary classification

A process that predicts a binary outcome (one of two possible classes). For example, your ML
model might need to predict problems such as “Is this email spam or not spam?" or "Is this
product a book or a car?"

bloom filter

A probabilistic, memory-efficient data structure that is used to test whether an element is a
member of a set.

blue/green deployment

A deployment strategy where you create two separate but identical environments. You run the
current application version in one environment (blue) and the new application version in the
other environment (green). This strategy helps you quickly roll back with minimal impact.

bot

A software application that runs automated tasks over the internet and simulates human
activity or interaction. Some bots are useful or beneficial, such as web crawlers that index
information on the internet. Some other bots, known as bad bots, are intended to disrupt or
cause harm to individuals or organizations.

B 55

https://docs.aws.eu/detective/latest/userguide/behavior-graph-data-about.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

botnet

Networks of bots that are infected by malware and are under the control of a single party,
known as a bot herder or bot operator. Botnets are the best-known mechanism to scale bots and
their impact.

branch

A contained area of a code repository. The first branch created in a repository is the main
branch. You can create a new branch from an existing branch, and you can then develop
features or fix bugs in the new branch. A branch you create to build a feature is commonly
referred to as a feature branch. When the feature is ready for release, you merge the feature
branch back into the main branch. For more information, see About branches (GitHub
documentation).

break-glass access

In exceptional circumstances and through an approved process, a quick means for a user to
gain access to an AWS account that they don't typically have permissions to access. For more
information, see the Implement break-glass procedures indicator in the AWS Well-Architected
guidance.

brownfield strategy

The existing infrastructure in your environment. When adopting a brownfield strategy for a
system architecture, you design the architecture around the constraints of the current systems
and infrastructure. If you are expanding the existing infrastructure, you might blend brownfield
and greenfield strategies.

buffer cache

The memory area where the most frequently accessed data is stored.

business capability

What a business does to generate value (for example, sales, customer service, or marketing).
Microservices architectures and development decisions can be driven by business capabilities.
For more information, see the Organized around business capabilities section of the Running
containerized microservices on AWS whitepaper.

business continuity planning (BCP)

A plan that addresses the potential impact of a disruptive event, such as a large-scale migration,
on operations and enables a business to resume operations quickly.

B 56

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-branches
https://docs.aws.eu/wellarchitected/latest/devops-guidance/ag.sad.5-implement-break-glass-procedures.html
https://docs.aws.eu//whitepapers/latest/running-containerized-microservices/organized-around-business-capabilities.html
https://docs.aws.eu//whitepapers/latest/running-containerized-microservices/welcome.html
https://docs.aws.eu//whitepapers/latest/running-containerized-microservices/welcome.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

C

CAF

See AWS Cloud Adoption Framework.

canary deployment

The slow and incremental release of a version to end users. When you are confident, you deploy
the new version and replace the current version in its entirety.

CCoE

See Cloud Center of Excellence.

CDC

See change data capture.

change data capture (CDC)

The process of tracking changes to a data source, such as a database table, and recording
metadata about the change. You can use CDC for various purposes, such as auditing or
replicating changes in a target system to maintain synchronization.

chaos engineering

Intentionally introducing failures or disruptive events to test a system’s resilience. You can use
AWS Fault Injection Service (AWS FIS) to perform experiments that stress your AWS workloads
and evaluate their response.

CI/CD

See continuous integration and continuous delivery.

classification

A categorization process that helps generate predictions. ML models for classification problems
predict a discrete value. Discrete values are always distinct from one another. For example, a
model might need to evaluate whether or not there is a car in an image.

client-side encryption

Encryption of data locally, before the target AWS service receives it.

C 57

https://docs.aws.eu/fis/latest/userguide/what-is.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Cloud Center of Excellence (CCoE)

A multi-disciplinary team that drives cloud adoption efforts across an organization, including
developing cloud best practices, mobilizing resources, establishing migration timelines, and
leading the organization through large-scale transformations. For more information, see the
CCoE posts on the AWS Cloud Enterprise Strategy Blog.

cloud computing

The cloud technology that is typically used for remote data storage and IoT device
management. Cloud computing is commonly connected to edge computing technology.

cloud operating model

In an IT organization, the operating model that is used to build, mature, and optimize one or
more cloud environments. For more information, see Building your Cloud Operating Model.

cloud stages of adoption

The four phases that organizations typically go through when they migrate to the AWS Cloud:

• Project – Running a few cloud-related projects for proof of concept and learning purposes

• Foundation – Making foundational investments to scale your cloud adoption (e.g., creating a
landing zone, defining a CCoE, establishing an operations model)

• Migration – Migrating individual applications

• Re-invention – Optimizing products and services, and innovating in the cloud

These stages were defined by Stephen Orban in the blog post The Journey Toward Cloud-First
& the Stages of Adoption on the AWS Cloud Enterprise Strategy blog. For information about
how they relate to the AWS migration strategy, see the migration readiness guide.

CMDB

See configuration management database.

code repository

A location where source code and other assets, such as documentation, samples, and scripts,
are stored and updated through version control processes. Common cloud repositories include
GitHub or Bitbucket Cloud. Each version of the code is called a branch. In a microservice
structure, each repository is devoted to a single piece of functionality. A single CI/CD pipeline
can use multiple repositories.

C 58

https://aws.amazon.com/blogs/enterprise-strategy/tag/ccoe/
https://docs.aws.eu/prescriptive-guidance/latest/strategy-cloud-operating-model/introduction.html
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://docs.aws.eu/prescriptive-guidance/latest/migration-readiness/

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

cold cache

A buffer cache that is empty, not well populated, or contains stale or irrelevant data. This
affects performance because the database instance must read from the main memory or disk,
which is slower than reading from the buffer cache.

cold data

Data that is rarely accessed and is typically historical. When querying this kind of data, slow
queries are typically acceptable. Moving this data to lower-performing and less expensive
storage tiers or classes can reduce costs.

computer vision (CV)

A field of AI that uses machine learning to analyze and extract information from visual
formats such as digital images and videos. For example, Amazon SageMaker AI provides image
processing algorithms for CV.

configuration drift

For a workload, a configuration change from the expected state. It might cause the workload to
become noncompliant, and it's typically gradual and unintentional.

configuration management database (CMDB)

A repository that stores and manages information about a database and its IT environment,
including both hardware and software components and their configurations. You typically use
data from a CMDB in the portfolio discovery and analysis stage of migration.

conformance pack

A collection of AWS Config rules and remediation actions that you can assemble to customize
your compliance and security checks. You can deploy a conformance pack as a single entity in
an AWS account and Region, or across an organization, by using a YAML template. For more
information, see Conformance packs in the AWS Config documentation.

continuous integration and continuous delivery (CI/CD)

The process of automating the source, build, test, staging, and production stages of the
software release process. CI/CD is commonly described as a pipeline. CI/CD can help you
automate processes, improve productivity, improve code quality, and deliver faster. For more
information, see Benefits of continuous delivery. CD can also stand for continuous deployment.
For more information, see Continuous Delivery vs. Continuous Deployment.

C 59

https://docs.aws.eu/config/latest/developerguide/conformance-packs.html
https://docs.aws.eu/whitepapers/latest/practicing-continuous-integration-continuous-delivery/benefits-of-continuous-delivery.html
https://aws.amazon.com/devops/continuous-delivery/

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

CV

See computer vision.

D

data at rest

Data that is stationary in your network, such as data that is in storage.

data classification

A process for identifying and categorizing the data in your network based on its criticality and
sensitivity. It is a critical component of any cybersecurity risk management strategy because
it helps you determine the appropriate protection and retention controls for the data. Data
classification is a component of the security pillar in the AWS Well-Architected Framework. For
more information, see Data classification.

data drift

A meaningful variation between the production data and the data that was used to train an ML
model, or a meaningful change in the input data over time. Data drift can reduce the overall
quality, accuracy, and fairness in ML model predictions.

data in transit

Data that is actively moving through your network, such as between network resources.

data mesh

An architectural framework that provides distributed, decentralized data ownership with
centralized management and governance.

data minimization

The principle of collecting and processing only the data that is strictly necessary. Practicing
data minimization in the AWS Cloud can reduce privacy risks, costs, and your analytics carbon
footprint.

data perimeter

A set of preventive guardrails in your AWS environment that help make sure that only trusted
identities are accessing trusted resources from expected networks. For more information, see
Building a data perimeter on AWS.

D 60

https://docs.aws.eu/wellarchitected/latest/security-pillar/data-classification.html
https://docs.aws.eu/whitepapers/latest/building-a-data-perimeter-on-aws/building-a-data-perimeter-on-aws.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

data preprocessing

To transform raw data into a format that is easily parsed by your ML model. Preprocessing data
can mean removing certain columns or rows and addressing missing, inconsistent, or duplicate
values.

data provenance

The process of tracking the origin and history of data throughout its lifecycle, such as how the
data was generated, transmitted, and stored.

data subject

An individual whose data is being collected and processed.

data warehouse

A data management system that supports business intelligence, such as analytics. Data
warehouses commonly contain large amounts of historical data, and they are typically used for
queries and analysis.

database definition language (DDL)

Statements or commands for creating or modifying the structure of tables and objects in a
database.

database manipulation language (DML)

Statements or commands for modifying (inserting, updating, and deleting) information in a
database.

DDL

See database definition language.

deep ensemble

To combine multiple deep learning models for prediction. You can use deep ensembles to
obtain a more accurate prediction or for estimating uncertainty in predictions.

deep learning

An ML subfield that uses multiple layers of artificial neural networks to identify mapping
between input data and target variables of interest.

D 61

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

defense-in-depth

An information security approach in which a series of security mechanisms and controls are
thoughtfully layered throughout a computer network to protect the confidentiality, integrity,
and availability of the network and the data within. When you adopt this strategy on AWS,
you add multiple controls at different layers of the AWS Organizations structure to help
secure resources. For example, a defense-in-depth approach might combine multi-factor
authentication, network segmentation, and encryption.

delegated administrator

In AWS Organizations, a compatible service can register an AWS member account to administer
the organization’s accounts and manage permissions for that service. This account is called the
delegated administrator for that service. For more information and a list of compatible services,
see Services that work with AWS Organizations in the AWS Organizations documentation.

deployment

The process of making an application, new features, or code fixes available in the target
environment. Deployment involves implementing changes in a code base and then building and
running that code base in the application’s environments.

development environment

See environment.

detective control

A security control that is designed to detect, log, and alert after an event has occurred.
These controls are a second line of defense, alerting you to security events that bypassed the
preventative controls in place. For more information, see Detective controls in Implementing
security controls on AWS.

development value stream mapping (DVSM)

A process used to identify and prioritize constraints that adversely affect speed and quality in
a software development lifecycle. DVSM extends the value stream mapping process originally
designed for lean manufacturing practices. It focuses on the steps and teams required to create
and move value through the software development process.

digital twin

A virtual representation of a real-world system, such as a building, factory, industrial
equipment, or production line. Digital twins support predictive maintenance, remote
monitoring, and production optimization.

D 62

https://docs.aws.eu/organizations/latest/userguide/orgs_integrate_services_list.html
https://docs.aws.eu/prescriptive-guidance/latest/aws-security-controls/detective-controls.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

dimension table

In a star schema, a smaller table that contains data attributes about quantitative data in a
fact table. Dimension table attributes are typically text fields or discrete numbers that behave
like text. These attributes are commonly used for query constraining, filtering, and result set
labeling.

disaster

An event that prevents a workload or system from fulfilling its business objectives in its primary
deployed location. These events can be natural disasters, technical failures, or the result of
human actions, such as unintentional misconfiguration or a malware attack.

disaster recovery (DR)

The strategy and process you use to minimize downtime and data loss caused by a disaster. For
more information, see Disaster Recovery of Workloads on AWS: Recovery in the Cloud in the
AWS Well-Architected Framework.

DML

See database manipulation language.

domain-driven design

An approach to developing a complex software system by connecting its components to
evolving domains, or core business goals, that each component serves. This concept was
introduced by Eric Evans in his book, Domain-Driven Design: Tackling Complexity in the Heart of
Software (Boston: Addison-Wesley Professional, 2003). For information about how you can use
domain-driven design with the strangler fig pattern, see Modernizing legacy Microsoft ASP.NET
(ASMX) web services incrementally by using containers and Amazon API Gateway.

DR

See disaster recovery.

drift detection

Tracking deviations from a baselined configuration. For example, you can use AWS
CloudFormation to detect drift in system resources, or you can use AWS Control Tower to detect
changes in your landing zone that might affect compliance with governance requirements.

DVSM

See development value stream mapping.

D 63

https://docs.aws.eu/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-workloads-on-aws.html
https://docs.aws.eu/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html
https://docs.aws.eu/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html
https://docs.aws.eu/AWSCloudFormation/latest/UserGuide/using-cfn-stack-drift.html
https://docs.aws.eu/controltower/latest/userguide/drift.html
https://docs.aws.eu/controltower/latest/userguide/drift.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

E

EDA

See exploratory data analysis.

EDI

See electronic data interchange.

edge computing

The technology that increases the computing power for smart devices at the edges of an IoT
network. When compared with cloud computing, edge computing can reduce communication
latency and improve response time.

electronic data interchange (EDI)

The automated exchange of business documents between organizations. For more information,
see What is Electronic Data Interchange.

encryption

A computing process that transforms plaintext data, which is human-readable, into ciphertext.

encryption key

A cryptographic string of randomized bits that is generated by an encryption algorithm. Keys
can vary in length, and each key is designed to be unpredictable and unique.

endianness

The order in which bytes are stored in computer memory. Big-endian systems store the most
significant byte first. Little-endian systems store the least significant byte first.

endpoint

See service endpoint.

endpoint service

A service that you can host in a virtual private cloud (VPC) to share with other users. You can
create an endpoint service with AWS PrivateLink and grant permissions to other AWS accounts
or to AWS Identity and Access Management (IAM) principals. These accounts or principals
can connect to your endpoint service privately by creating interface VPC endpoints. For more

E 64

https://aws.amazon.com/what-is/electronic-data-interchange/

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

information, see Create an endpoint service in the Amazon Virtual Private Cloud (Amazon VPC)
documentation.

enterprise resource planning (ERP)

A system that automates and manages key business processes (such as accounting, MES, and
project management) for an enterprise.

envelope encryption

The process of encrypting an encryption key with another encryption key. For more
information, see Envelope encryption in the AWS Key Management Service (AWS KMS)
documentation.

environment

An instance of a running application. The following are common types of environments in cloud
computing:

• development environment – An instance of a running application that is available only to the
core team responsible for maintaining the application. Development environments are used
to test changes before promoting them to upper environments. This type of environment is
sometimes referred to as a test environment.

• lower environments – All development environments for an application, such as those used
for initial builds and tests.

• production environment – An instance of a running application that end users can access. In a
CI/CD pipeline, the production environment is the last deployment environment.

• upper environments – All environments that can be accessed by users other than the core
development team. This can include a production environment, preproduction environments,
and environments for user acceptance testing.

epic

In agile methodologies, functional categories that help organize and prioritize your work. Epics
provide a high-level description of requirements and implementation tasks. For example, AWS
CAF security epics include identity and access management, detective controls, infrastructure
security, data protection, and incident response. For more information about epics in the AWS
migration strategy, see the program implementation guide.

ERP

See enterprise resource planning.

E 65

https://docs.aws.eu/vpc/latest/privatelink/create-endpoint-service.html
https://docs.aws.eu/kms/latest/developerguide/concepts.html#enveloping
https://docs.aws.eu/prescriptive-guidance/latest/migration-program-implementation/

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

exploratory data analysis (EDA)

The process of analyzing a dataset to understand its main characteristics. You collect or
aggregate data and then perform initial investigations to find patterns, detect anomalies,
and check assumptions. EDA is performed by calculating summary statistics and creating data
visualizations.

F

fact table

The central table in a star schema. It stores quantitative data about business operations.
Typically, a fact table contains two types of columns: those that contain measures and those
that contain a foreign key to a dimension table.

fail fast

A philosophy that uses frequent and incremental testing to reduce the development lifecycle. It
is a critical part of an agile approach.

fault isolation boundary

In the AWS Cloud, a boundary such as an Availability Zone, AWS Region, control plane, or data
plane that limits the effect of a failure and helps improve the resilience of workloads. For more
information, see AWS Fault Isolation Boundaries.

feature branch

See branch.

features

The input data that you use to make a prediction. For example, in a manufacturing context,
features could be images that are periodically captured from the manufacturing line.

feature importance

How significant a feature is for a model’s predictions. This is usually expressed as a numerical
score that can be calculated through various techniques, such as Shapley Additive Explanations
(SHAP) and integrated gradients. For more information, see Machine learning model
interpretability with AWS.

F 66

https://docs.aws.eu/whitepapers/latest/aws-fault-isolation-boundaries/abstract-and-introduction.html
https://docs.aws.eu/prescriptive-guidance/latest/ml-model-interpretability/overview.html
https://docs.aws.eu/prescriptive-guidance/latest/ml-model-interpretability/overview.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

feature transformation

To optimize data for the ML process, including enriching data with additional sources, scaling
values, or extracting multiple sets of information from a single data field. This enables the ML
model to benefit from the data. For example, if you break down the “2021-05-27 00:15:37”
date into “2021”, “May”, “Thu”, and “15”, you can help the learning algorithm learn nuanced
patterns associated with different data components.

few-shot prompting

Providing an LLM with a small number of examples that demonstrate the task and desired
output before asking it to perform a similar task. This technique is an application of in-context
learning, where models learn from examples (shots) that are embedded in prompts. Few-shot
prompting can be effective for tasks that require specific formatting, reasoning, or domain
knowledge. See also zero-shot prompting.

FGAC

See fine-grained access control.

fine-grained access control (FGAC)

The use of multiple conditions to allow or deny an access request.

flash-cut migration

A database migration method that uses continuous data replication through change data
capture to migrate data in the shortest time possible, instead of using a phased approach. The
objective is to keep downtime to a minimum.

FM

See foundation model.

foundation model (FM)

A large deep-learning neural network that has been training on massive datasets of generalized
and unlabeled data. FMs are capable of performing a wide variety of general tasks, such as
understanding language, generating text and images, and conversing in natural language. For
more information, see What are Foundation Models.

F 67

https://aws.amazon.com/what-is/foundation-models/

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

G

generative AI

A subset of AI models that have been trained on large amounts of data and that can use a
simple text prompt to create new content and artifacts, such as images, videos, text, and audio.
For more information, see What is Generative AI.

geo blocking

See geographic restrictions.

geographic restrictions (geo blocking)

In Amazon CloudFront, an option to prevent users in specific countries from accessing content
distributions. You can use an allow list or block list to specify approved and banned countries.
For more information, see Restricting the geographic distribution of your content in the
CloudFront documentation.

Gitflow workflow

An approach in which lower and upper environments use different branches in a source code
repository. The Gitflow workflow is considered legacy, and the trunk-based workflow is the
modern, preferred approach.

golden image

A snapshot of a system or software that is used as a template to deploy new instances of that
system or software. For example, in manufacturing, a golden image can be used to provision
software on multiple devices and helps improve speed, scalability, and productivity in device
manufacturing operations.

greenfield strategy

The absence of existing infrastructure in a new environment. When adopting a greenfield
strategy for a system architecture, you can select all new technologies without the restriction
of compatibility with existing infrastructure, also known as brownfield. If you are expanding the
existing infrastructure, you might blend brownfield and greenfield strategies.

guardrail

A high-level rule that helps govern resources, policies, and compliance across organizational
units (OUs). Preventive guardrails enforce policies to ensure alignment to compliance standards.
They are implemented by using service control policies and IAM permissions boundaries.

G 68

https://aws.amazon.com/what-is/generative-ai/
https://docs.aws.eu/AmazonCloudFront/latest/DeveloperGuide/georestrictions.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Detective guardrails detect policy violations and compliance issues, and generate alerts for
remediation. They are implemented by using AWS Config, AWS Security Hub CSPM, Amazon
GuardDuty, AWS Trusted Advisor, Amazon Inspector, and custom AWS Lambda checks.

H

HA

See high availability.

heterogeneous database migration

Migrating your source database to a target database that uses a different database engine
(for example, Oracle to Amazon Aurora). Heterogeneous migration is typically part of a re-
architecting effort, and converting the schema can be a complex task. AWS provides AWS SCT
that helps with schema conversions.

high availability (HA)

The ability of a workload to operate continuously, without intervention, in the event of
challenges or disasters. HA systems are designed to automatically fail over, consistently deliver
high-quality performance, and handle different loads and failures with minimal performance
impact.

historian modernization

An approach used to modernize and upgrade operational technology (OT) systems to better
serve the needs of the manufacturing industry. A historian is a type of database that is used to
collect and store data from various sources in a factory.

holdout data

A portion of historical, labeled data that is withheld from a dataset that is used to train a
machine learning model. You can use holdout data to evaluate the model performance by
comparing the model predictions against the holdout data.

homogeneous database migration

Migrating your source database to a target database that shares the same database engine
(for example, Microsoft SQL Server to Amazon RDS for SQL Server). Homogeneous migration
is typically part of a rehosting or replatforming effort. You can use native database utilities to
migrate the schema.

H 69

https://docs.aws.eu/SchemaConversionTool/latest/userguide/CHAP_Welcome.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

hot data

Data that is frequently accessed, such as real-time data or recent translational data. This data
typically requires a high-performance storage tier or class to provide fast query responses.

hotfix

An urgent fix for a critical issue in a production environment. Due to its urgency, a hotfix is
usually made outside of the typical DevOps release workflow.

hypercare period

Immediately following cutover, the period of time when a migration team manages and
monitors the migrated applications in the cloud in order to address any issues. Typically, this
period is 1–4 days in length. At the end of the hypercare period, the migration team typically
transfers responsibility for the applications to the cloud operations team.

I

IaC

See infrastructure as code.

identity-based policy

A policy attached to one or more IAM principals that defines their permissions within the AWS
Cloud environment.

idle application

An application that has an average CPU and memory usage between 5 and 20 percent over
a period of 90 days. In a migration project, it is common to retire these applications or retain
them on premises.

IIoT

See industrial Internet of Things.

immutable infrastructure

A model that deploys new infrastructure for production workloads instead of updating,
patching, or modifying the existing infrastructure. Immutable infrastructures are inherently
more consistent, reliable, and predictable than mutable infrastructure. For more information,
see the Deploy using immutable infrastructure best practice in the AWS Well-Architected
Framework.

I 70

https://docs.aws.eu/wellarchitected/latest/reliability-pillar/rel_tracking_change_management_immutable_infrastructure.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

inbound (ingress) VPC

In an AWS multi-account architecture, a VPC that accepts, inspects, and routes network
connections from outside an application. The AWS Security Reference Architecture recommends
setting up your Network account with inbound, outbound, and inspection VPCs to protect the
two-way interface between your application and the broader internet.

incremental migration

A cutover strategy in which you migrate your application in small parts instead of performing
a single, full cutover. For example, you might move only a few microservices or users to the
new system initially. After you verify that everything is working properly, you can incrementally
move additional microservices or users until you can decommission your legacy system. This
strategy reduces the risks associated with large migrations.

Industry 4.0

A term that was introduced by Klaus Schwab in 2016 to refer to the modernization of
manufacturing processes through advances in connectivity, real-time data, automation,
analytics, and AI/ML.

infrastructure

All of the resources and assets contained within an application’s environment.

infrastructure as code (IaC)

The process of provisioning and managing an application’s infrastructure through a set
of configuration files. IaC is designed to help you centralize infrastructure management,
standardize resources, and scale quickly so that new environments are repeatable, reliable, and
consistent.

industrial Internet of Things (IIoT)

The use of internet-connected sensors and devices in the industrial sectors, such as
manufacturing, energy, automotive, healthcare, life sciences, and agriculture. For more
information, see Building an industrial Internet of Things (IIoT) digital transformation strategy.

inspection VPC

In an AWS multi-account architecture, a centralized VPC that manages inspections of network
traffic between VPCs (in the same or different AWS Regions), the internet, and on-premises
networks. The AWS Security Reference Architecture recommends setting up your Network
account with inbound, outbound, and inspection VPCs to protect the two-way interface
between your application and the broader internet.

I 71

https://docs.aws.eu/prescriptive-guidance/latest/security-reference-architecture/network.html
https://www.weforum.org/about/klaus-schwab/
https://docs.aws.eu/prescriptive-guidance/latest/strategy-iiot-transformation/welcome.html
https://docs.aws.eu/prescriptive-guidance/latest/security-reference-architecture/network.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

Internet of Things (IoT)

The network of connected physical objects with embedded sensors or processors that
communicate with other devices and systems through the internet or over a local
communication network. For more information, see What is IoT?

interpretability

A characteristic of a machine learning model that describes the degree to which a human
can understand how the model’s predictions depend on its inputs. For more information, see
Machine learning model interpretability with AWS.

IoT

See Internet of Things.

IT information library (ITIL)

A set of best practices for delivering IT services and aligning these services with business
requirements. ITIL provides the foundation for ITSM.

IT service management (ITSM)

Activities associated with designing, implementing, managing, and supporting IT services for
an organization. For information about integrating cloud operations with ITSM tools, see the
operations integration guide.

ITIL

See IT information library.

ITSM

See IT service management.

L

label-based access control (LBAC)

An implementation of mandatory access control (MAC) where the users and the data itself are
each explicitly assigned a security label value. The intersection between the user security label
and data security label determines which rows and columns can be seen by the user.

L 72

https://aws.amazon.com/what-is/iot/
https://docs.aws.eu/prescriptive-guidance/latest/ml-model-interpretability/
https://docs.aws.eu/prescriptive-guidance/latest/migration-operations-integration/tools-integration.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

landing zone

A landing zone is a well-architected, multi-account AWS environment that is scalable and
secure. This is a starting point from which your organizations can quickly launch and deploy
workloads and applications with confidence in their security and infrastructure environment.
For more information about landing zones, see Setting up a secure and scalable multi-account
AWS environment.

large language model (LLM)

A deep learning AI model that is pretrained on a vast amount of data. An LLM can perform
multiple tasks, such as answering questions, summarizing documents, translating text into
other languages, and completing sentences. For more information, see What are LLMs.

large migration

A migration of 300 or more servers.

LBAC

See label-based access control.

least privilege

The security best practice of granting the minimum permissions required to perform a task. For
more information, see Apply least-privilege permissions in the IAM documentation.

lift and shift

See 7 Rs.

little-endian system

A system that stores the least significant byte first. See also endianness.

LLM

See large language model.

lower environments

See environment.

L 73

https://docs.aws.eu/prescriptive-guidance/latest/migration-aws-environment/welcome.html
https://docs.aws.eu/prescriptive-guidance/latest/migration-aws-environment/welcome.html
https://aws.amazon.com/what-is/large-language-model/
https://docs.aws.eu/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

M

machine learning (ML)

A type of artificial intelligence that uses algorithms and techniques for pattern recognition and
learning. ML analyzes and learns from recorded data, such as Internet of Things (IoT) data, to
generate a statistical model based on patterns. For more information, see Machine Learning.

main branch

See branch.

malware

Software that is designed to compromise computer security or privacy. Malware might disrupt
computer systems, leak sensitive information, or gain unauthorized access. Examples of
malware include viruses, worms, ransomware, Trojan horses, spyware, and keyloggers.

managed services

AWS services for which AWS operates the infrastructure layer, the operating system, and
platforms, and you access the endpoints to store and retrieve data. Amazon Simple Storage
Service (Amazon S3) and Amazon DynamoDB are examples of managed services. These are also
known as abstracted services.

manufacturing execution system (MES)

A software system for tracking, monitoring, documenting, and controlling production processes
that convert raw materials to finished products on the shop floor.

MAP

See Migration Acceleration Program.

mechanism

A complete process in which you create a tool, drive adoption of the tool, and then inspect the
results in order to make adjustments. A mechanism is a cycle that reinforces and improves itself
as it operates. For more information, see Building mechanisms in the AWS Well-Architected
Framework.

member account

All AWS accounts other than the management account that are part of an organization in AWS
Organizations. An account can be a member of only one organization at a time.

M 74

https://aws.amazon.com/what-is/machine-learning/
https://docs.aws.eu/wellarchitected/latest/operational-readiness-reviews/building-mechanisms.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

MES

See manufacturing execution system.

Message Queuing Telemetry Transport (MQTT)

A lightweight, machine-to-machine (M2M) communication protocol, based on the publish/
subscribe pattern, for resource-constrained IoT devices.

microservice

A small, independent service that communicates over well-defined APIs and is typically
owned by small, self-contained teams. For example, an insurance system might include
microservices that map to business capabilities, such as sales or marketing, or subdomains,
such as purchasing, claims, or analytics. The benefits of microservices include agility, flexible
scaling, easy deployment, reusable code, and resilience. For more information, see Integrating
microservices by using AWS serverless services.

microservices architecture

An approach to building an application with independent components that run each application
process as a microservice. These microservices communicate through a well-defined interface
by using lightweight APIs. Each microservice in this architecture can be updated, deployed,
and scaled to meet demand for specific functions of an application. For more information, see
Implementing microservices on AWS.

Migration Acceleration Program (MAP)

An AWS program that provides consulting support, training, and services to help organizations
build a strong operational foundation for moving to the cloud, and to help offset the initial
cost of migrations. MAP includes a migration methodology for executing legacy migrations in a
methodical way and a set of tools to automate and accelerate common migration scenarios.

migration at scale

The process of moving the majority of the application portfolio to the cloud in waves, with
more applications moved at a faster rate in each wave. This phase uses the best practices and
lessons learned from the earlier phases to implement a migration factory of teams, tools, and
processes to streamline the migration of workloads through automation and agile delivery. This
is the third phase of the AWS migration strategy.

migration factory

Cross-functional teams that streamline the migration of workloads through automated, agile
approaches. Migration factory teams typically include operations, business analysts and owners,

M 75

https://docs.aws.eu/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://docs.aws.eu/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://docs.aws.eu//whitepapers/latest/microservices-on-aws/microservices-on-aws.html
https://docs.aws.eu/prescriptive-guidance/latest/strategy-migration/

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

migration engineers, developers, and DevOps professionals working in sprints. Between 20
and 50 percent of an enterprise application portfolio consists of repeated patterns that can
be optimized by a factory approach. For more information, see the discussion of migration
factories and the Cloud Migration Factory guide in this content set.

migration metadata

The information about the application and server that is needed to complete the migration.
Each migration pattern requires a different set of migration metadata. Examples of migration
metadata include the target subnet, security group, and AWS account.

migration pattern

A repeatable migration task that details the migration strategy, the migration destination, and
the migration application or service used. Example: Rehost migration to Amazon EC2 with AWS
Application Migration Service.

Migration Portfolio Assessment (MPA)

An online tool that provides information for validating the business case for migrating to
the AWS Cloud. MPA provides detailed portfolio assessment (server right-sizing, pricing, TCO
comparisons, migration cost analysis) as well as migration planning (application data analysis
and data collection, application grouping, migration prioritization, and wave planning). The
MPA tool (requires login) is available free of charge to all AWS consultants and APN Partner
consultants.

Migration Readiness Assessment (MRA)

The process of gaining insights about an organization’s cloud readiness status, identifying
strengths and weaknesses, and building an action plan to close identified gaps, using the AWS
CAF. For more information, see the migration readiness guide. MRA is the first phase of the AWS
migration strategy.

migration strategy

The approach used to migrate a workload to the AWS Cloud. For more information, see the 7 Rs
entry in this glossary and see Mobilize your organization to accelerate large-scale migrations.

ML

See machine learning.

M 76

https://docs.aws.eu/prescriptive-guidance/latest/strategy-migration/migrations-phase.html
https://docs.aws.eu/prescriptive-guidance/latest/strategy-migration/migrations-phase.html
https://docs.aws.eu/prescriptive-guidance/latest/migration-factory-cloudendure/welcome.html
https://mpa.accelerate.amazonaws.com/
https://docs.aws.eu/prescriptive-guidance/latest/migration-readiness/welcome.html
https://docs.aws.eu/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.eu/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.eu/prescriptive-guidance/latest/strategy-migration/welcome.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

modernization

Transforming an outdated (legacy or monolithic) application and its infrastructure into an agile,
elastic, and highly available system in the cloud to reduce costs, gain efficiencies, and take
advantage of innovations. For more information, see Strategy for modernizing applications in
the AWS Cloud.

modernization readiness assessment

An evaluation that helps determine the modernization readiness of an organization’s
applications; identifies benefits, risks, and dependencies; and determines how well the
organization can support the future state of those applications. The outcome of the assessment
is a blueprint of the target architecture, a roadmap that details development phases and
milestones for the modernization process, and an action plan for addressing identified gaps. For
more information, see Evaluating modernization readiness for applications in the AWS Cloud.

monolithic applications (monoliths)

Applications that run as a single service with tightly coupled processes. Monolithic applications
have several drawbacks. If one application feature experiences a spike in demand, the
entire architecture must be scaled. Adding or improving a monolithic application’s features
also becomes more complex when the code base grows. To address these issues, you can
use a microservices architecture. For more information, see Decomposing monoliths into
microservices.

MPA

See Migration Portfolio Assessment.

MQTT

See Message Queuing Telemetry Transport.

multiclass classification

A process that helps generate predictions for multiple classes (predicting one of more than
two outcomes). For example, an ML model might ask "Is this product a book, car, or phone?" or
"Which product category is most interesting to this customer?"

mutable infrastructure

A model that updates and modifies the existing infrastructure for production workloads. For
improved consistency, reliability, and predictability, the AWS Well-Architected Framework
recommends the use of immutable infrastructure as a best practice.

M 77

https://docs.aws.eu/prescriptive-guidance/latest/strategy-modernizing-applications/
https://docs.aws.eu/prescriptive-guidance/latest/strategy-modernizing-applications/
https://docs.aws.eu/prescriptive-guidance/latest/modernization-assessing-applications/
https://docs.aws.eu/prescriptive-guidance/latest/modernization-decomposing-monoliths/welcome.html
https://docs.aws.eu/prescriptive-guidance/latest/modernization-decomposing-monoliths/welcome.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

O

OAC

See origin access control.

OAI

See origin access identity.

OCM

See organizational change management.

offline migration

A migration method in which the source workload is taken down during the migration process.
This method involves extended downtime and is typically used for small, non-critical workloads.

OI

See operations integration.

OLA

See operational-level agreement.

online migration

A migration method in which the source workload is copied to the target system without being
taken offline. Applications that are connected to the workload can continue to function during
the migration. This method involves zero to minimal downtime and is typically used for critical
production workloads.

OPC-UA

See Open Process Communications - Unified Architecture.

Open Process Communications - Unified Architecture (OPC-UA)

A machine-to-machine (M2M) communication protocol for industrial automation. OPC-UA
provides an interoperability standard with data encryption, authentication, and authorization
schemes.

operational-level agreement (OLA)

An agreement that clarifies what functional IT groups promise to deliver to each other, to
support a service-level agreement (SLA).

O 78

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

operational readiness review (ORR)

A checklist of questions and associated best practices that help you understand, evaluate,
prevent, or reduce the scope of incidents and possible failures. For more information, see
Operational Readiness Reviews (ORR) in the AWS Well-Architected Framework.

operational technology (OT)

Hardware and software systems that work with the physical environment to control industrial
operations, equipment, and infrastructure. In manufacturing, the integration of OT and
information technology (IT) systems is a key focus for Industry 4.0 transformations.

operations integration (OI)

The process of modernizing operations in the cloud, which involves readiness planning,
automation, and integration. For more information, see the operations integration guide.

organization trail

A trail that’s created by AWS CloudTrail that logs all events for all AWS accounts in an
organization in AWS Organizations. This trail is created in each AWS account that’s part of the
organization and tracks the activity in each account. For more information, see Creating a trail
for an organization in the CloudTrail documentation.

organizational change management (OCM)

A framework for managing major, disruptive business transformations from a people, culture,
and leadership perspective. OCM helps organizations prepare for, and transition to, new
systems and strategies by accelerating change adoption, addressing transitional issues, and
driving cultural and organizational changes. In the AWS migration strategy, this framework is
called people acceleration, because of the speed of change required in cloud adoption projects.
For more information, see the OCM guide.

origin access control (OAC)

In CloudFront, an enhanced option for restricting access to secure your Amazon Simple Storage
Service (Amazon S3) content. OAC supports all S3 buckets in all AWS Regions, server-side
encryption with AWS KMS (SSE-KMS), and dynamic PUT and DELETE requests to the S3 bucket.

origin access identity (OAI)

In CloudFront, an option for restricting access to secure your Amazon S3 content. When you
use OAI, CloudFront creates a principal that Amazon S3 can authenticate with. Authenticated
principals can access content in an S3 bucket only through a specific CloudFront distribution.
See also OAC, which provides more granular and enhanced access control.

O 79

https://docs.aws.eu/wellarchitected/latest/operational-readiness-reviews/wa-operational-readiness-reviews.html
https://docs.aws.eu/prescriptive-guidance/latest/migration-operations-integration/
https://docs.aws.eu/awscloudtrail/latest/userguide/creating-trail-organization.html
https://docs.aws.eu/awscloudtrail/latest/userguide/creating-trail-organization.html
https://docs.aws.eu/prescriptive-guidance/latest/migration-ocm/

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

ORR

See operational readiness review.

OT

See operational technology.

outbound (egress) VPC

In an AWS multi-account architecture, a VPC that handles network connections that are
initiated from within an application. The AWS Security Reference Architecture recommends
setting up your Network account with inbound, outbound, and inspection VPCs to protect the
two-way interface between your application and the broader internet.

P

permissions boundary

An IAM management policy that is attached to IAM principals to set the maximum permissions
that the user or role can have. For more information, see Permissions boundaries in the IAM
documentation.

personally identifiable information (PII)

Information that, when viewed directly or paired with other related data, can be used to
reasonably infer the identity of an individual. Examples of PII include names, addresses, and
contact information.

PII

See personally identifiable information.

playbook

A set of predefined steps that capture the work associated with migrations, such as delivering
core operations functions in the cloud. A playbook can take the form of scripts, automated
runbooks, or a summary of processes or steps required to operate your modernized
environment.

PLC

See programmable logic controller.

P 80

https://docs.aws.eu/prescriptive-guidance/latest/security-reference-architecture/network.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_boundaries.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

PLM

See product lifecycle management.

policy

An object that can define permissions (see identity-based policy), specify access conditions (see
resource-based policy), or define the maximum permissions for all accounts in an organization
in AWS Organizations (see service control policy).

polyglot persistence

Independently choosing a microservice’s data storage technology based on data access patterns
and other requirements. If your microservices have the same data storage technology, they can
encounter implementation challenges or experience poor performance. Microservices are more
easily implemented and achieve better performance and scalability if they use the data store
best adapted to their requirements. For more information, see Enabling data persistence in
microservices.

portfolio assessment

A process of discovering, analyzing, and prioritizing the application portfolio in order to plan
the migration. For more information, see Evaluating migration readiness.

predicate

A query condition that returns true or false, commonly located in a WHERE clause.

predicate pushdown

A database query optimization technique that filters the data in the query before transfer. This
reduces the amount of data that must be retrieved and processed from the relational database,
and it improves query performance.

preventative control

A security control that is designed to prevent an event from occurring. These controls are a first
line of defense to help prevent unauthorized access or unwanted changes to your network. For
more information, see Preventative controls in Implementing security controls on AWS.

principal

An entity in AWS that can perform actions and access resources. This entity is typically a root
user for an AWS account, an IAM role, or a user. For more information, see Principal in Roles
terms and concepts in the IAM documentation.

P 81

https://docs.aws.eu/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.eu/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.eu/prescriptive-guidance/latest/migration-readiness/welcome.html
https://docs.aws.eu/prescriptive-guidance/latest/aws-security-controls/preventative-controls.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts
https://docs.aws.eu/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

privacy by design

A system engineering approach that takes privacy into account through the whole development
process.

private hosted zones

A container that holds information about how you want Amazon Route 53 to respond to DNS
queries for a domain and its subdomains within one or more VPCs. For more information, see
Working with private hosted zones in the Route 53 documentation.

proactive control

A security control designed to prevent the deployment of noncompliant resources. These
controls scan resources before they are provisioned. If the resource is not compliant with the
control, then it isn't provisioned. For more information, see the Controls reference guide in the
AWS Control Tower documentation and see Proactive controls in Implementing security controls
on AWS.

product lifecycle management (PLM)

The management of data and processes for a product throughout its entire lifecycle, from
design, development, and launch, through growth and maturity, to decline and removal.

production environment

See environment.

programmable logic controller (PLC)

In manufacturing, a highly reliable, adaptable computer that monitors machines and automates
manufacturing processes.

prompt chaining

Using the output of one LLM prompt as the input for the next prompt to generate better
responses. This technique is used to break down a complex task into subtasks, or to iteratively
refine or expand a preliminary response. It helps improve the accuracy and relevance of a
model’s responses and allows for more granular, personalized results.

pseudonymization

The process of replacing personal identifiers in a dataset with placeholder values.
Pseudonymization can help protect personal privacy. Pseudonymized data is still considered to
be personal data.

P 82

https://docs.aws.eu/Route53/latest/DeveloperGuide/hosted-zones-private.html
https://docs.aws.eu/controltower/latest/controlreference/controls.html
https://docs.aws.eu/prescriptive-guidance/latest/aws-security-controls/proactive-controls.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

publish/subscribe (pub/sub)

A pattern that enables asynchronous communications among microservices to improve
scalability and responsiveness. For example, in a microservices-based MES, a microservice can
publish event messages to a channel that other microservices can subscribe to. The system can
add new microservices without changing the publishing service.

Q

query plan

A series of steps, like instructions, that are used to access the data in a SQL relational database
system.

query plan regression

When a database service optimizer chooses a less optimal plan than it did before a given
change to the database environment. This can be caused by changes to statistics, constraints,
environment settings, query parameter bindings, and updates to the database engine.

R

RACI matrix

See responsible, accountable, consulted, informed (RACI).

RAG

See Retrieval Augmented Generation.

ransomware

A malicious software that is designed to block access to a computer system or data until a
payment is made.

RASCI matrix

See responsible, accountable, consulted, informed (RACI).

RCAC

See row and column access control.

Q 83

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

read replica

A copy of a database that’s used for read-only purposes. You can route queries to the read
replica to reduce the load on your primary database.

re-architect

See 7 Rs.

recovery point objective (RPO)

The maximum acceptable amount of time since the last data recovery point. This determines
what is considered an acceptable loss of data between the last recovery point and the
interruption of service.

recovery time objective (RTO)

The maximum acceptable delay between the interruption of service and restoration of service.

refactor

See 7 Rs.

Region

A collection of AWS resources in a geographic area. Each AWS Region is isolated and
independent of the others to provide fault tolerance, stability, and resilience. For more
information, see Specify which AWS Regions your account can use.

regression

An ML technique that predicts a numeric value. For example, to solve the problem of "What
price will this house sell for?" an ML model could use a linear regression model to predict a
house's sale price based on known facts about the house (for example, the square footage).

rehost

See 7 Rs.

release

In a deployment process, the act of promoting changes to a production environment.

relocate

See 7 Rs.

replatform

See 7 Rs.

R 84

https://docs.aws.eu/accounts/latest/reference/manage-acct-regions.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

repurchase

See 7 Rs.

resiliency

An application's ability to resist or recover from disruptions. High availability and disaster
recovery are common considerations when planning for resiliency in the AWS Cloud. For more
information, see AWS Cloud Resilience.

resource-based policy

A policy attached to a resource, such as an Amazon S3 bucket, an endpoint, or an encryption
key. This type of policy specifies which principals are allowed access, supported actions, and any
other conditions that must be met.

responsible, accountable, consulted, informed (RACI) matrix

A matrix that defines the roles and responsibilities for all parties involved in migration activities
and cloud operations. The matrix name is derived from the responsibility types defined in the
matrix: responsible (R), accountable (A), consulted (C), and informed (I). The support (S) type
is optional. If you include support, the matrix is called a RASCI matrix, and if you exclude it, it’s
called a RACI matrix.

responsive control

A security control that is designed to drive remediation of adverse events or deviations from
your security baseline. For more information, see Responsive controls in Implementing security
controls on AWS.

retain

See 7 Rs.

retire

See 7 Rs.

Retrieval Augmented Generation (RAG)

A generative AI technology in which an LLM references an authoritative data source that is
outside of its training data sources before generating a response. For example, a RAG model
might perform a semantic search of an organization's knowledge base or custom data. For more
information, see What is RAG.

R 85

https://aws.amazon.com/resilience/
https://docs.aws.eu/prescriptive-guidance/latest/aws-security-controls/responsive-controls.html
https://aws.amazon.com/what-is/retrieval-augmented-generation/

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

rotation

The process of periodically updating a secret to make it more difficult for an attacker to access
the credentials.

row and column access control (RCAC)

The use of basic, flexible SQL expressions that have defined access rules. RCAC consists of row
permissions and column masks.

RPO

See recovery point objective.

RTO

See recovery time objective.

runbook

A set of manual or automated procedures required to perform a specific task. These are
typically built to streamline repetitive operations or procedures with high error rates.

S

SAML 2.0

An open standard that many identity providers (IdPs) use. This feature enables federated
single sign-on (SSO), so users can log into the AWS Management Console or call the AWS API
operations without you having to create user in IAM for everyone in your organization. For more
information about SAML 2.0-based federation, see About SAML 2.0-based federation in the IAM
documentation.

SCADA

See supervisory control and data acquisition.

SCP

See service control policy.

secret

In AWS Secrets Manager, confidential or restricted information, such as a password or user
credentials, that you store in encrypted form. It consists of the secret value and its metadata.

S 86

https://docs.aws.eu/IAM/latest/UserGuide/id_roles_providers_saml.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

The secret value can be binary, a single string, or multiple strings. For more information, see
What's in a Secrets Manager secret? in the Secrets Manager documentation.

security by design

A system engineering approach that takes security into account through the whole
development process.

security control

A technical or administrative guardrail that prevents, detects, or reduces the ability of a threat
actor to exploit a security vulnerability. There are four primary types of security controls:
preventative, detective, responsive, and proactive.

security hardening

The process of reducing the attack surface to make it more resistant to attacks. This can include
actions such as removing resources that are no longer needed, implementing the security best
practice of granting least privilege, or deactivating unnecessary features in configuration files.

security information and event management (SIEM) system

Tools and services that combine security information management (SIM) and security event
management (SEM) systems. A SIEM system collects, monitors, and analyzes data from servers,
networks, devices, and other sources to detect threats and security breaches, and to generate
alerts.

security response automation

A predefined and programmed action that is designed to automatically respond to or remediate
a security event. These automations serve as detective or responsive security controls that help
you implement AWS security best practices. Examples of automated response actions include
modifying a VPC security group, patching an Amazon EC2 instance, or rotating credentials.

server-side encryption

Encryption of data at its destination, by the AWS service that receives it.

service control policy (SCP)

A policy that provides centralized control over permissions for all accounts in an organization
in AWS Organizations. SCPs define guardrails or set limits on actions that an administrator can
delegate to users or roles. You can use SCPs as allow lists or deny lists, to specify which services
or actions are permitted or prohibited. For more information, see Service control policies in the
AWS Organizations documentation.

S 87

https://docs.aws.eu/secretsmanager/latest/userguide/whats-in-a-secret.html
https://docs.aws.eu/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

service endpoint

The URL of the entry point for an AWS service. You can use the endpoint to connect
programmatically to the target service. For more information, see AWS service endpoints in
AWS General Reference.

service-level agreement (SLA)

An agreement that clarifies what an IT team promises to deliver to their customers, such as
service uptime and performance.

service-level indicator (SLI)

A measurement of a performance aspect of a service, such as its error rate, availability, or
throughput.

service-level objective (SLO)

A target metric that represents the health of a service, as measured by a service-level indicator.

shared responsibility model

A model describing the responsibility you share with AWS for cloud security and compliance.
AWS is responsible for security of the cloud, whereas you are responsible for security in the
cloud. For more information, see Shared responsibility model.

SIEM

See security information and event management system.

single point of failure (SPOF)

A failure in a single, critical component of an application that can disrupt the system.

SLA

See service-level agreement.

SLI

See service-level indicator.

SLO

See service-level objective.

split-and-seed model

A pattern for scaling and accelerating modernization projects. As new features and product
releases are defined, the core team splits up to create new product teams. This helps scale your

S 88

https://docs.aws.eu/general/latest/gr/rande.html
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

organization’s capabilities and services, improves developer productivity, and supports rapid
innovation. For more information, see Phased approach to modernizing applications in the AWS
Cloud.

SPOF

See single point of failure.

star schema

A database organizational structure that uses one large fact table to store transactional or
measured data and uses one or more smaller dimensional tables to store data attributes. This
structure is designed for use in a data warehouse or for business intelligence purposes.

strangler fig pattern

An approach to modernizing monolithic systems by incrementally rewriting and replacing
system functionality until the legacy system can be decommissioned. This pattern uses the
analogy of a fig vine that grows into an established tree and eventually overcomes and replaces
its host. The pattern was introduced by Martin Fowler as a way to manage risk when rewriting
monolithic systems. For an example of how to apply this pattern, see Modernizing legacy
Microsoft ASP.NET (ASMX) web services incrementally by using containers and Amazon API
Gateway.

subnet

A range of IP addresses in your VPC. A subnet must reside in a single Availability Zone.

supervisory control and data acquisition (SCADA)

In manufacturing, a system that uses hardware and software to monitor physical assets and
production operations.

symmetric encryption

An encryption algorithm that uses the same key to encrypt and decrypt the data.

synthetic testing

Testing a system in a way that simulates user interactions to detect potential issues or to
monitor performance. You can use Amazon CloudWatch Synthetics to create these tests.

system prompt

A technique for providing context, instructions, or guidelines to an LLM to direct its behavior.
System prompts help set context and establish rules for interactions with users.

S 89

https://docs.aws.eu/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://docs.aws.eu/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://docs.aws.eu/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.eu/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.eu/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.eu/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

T

tags

Key-value pairs that act as metadata for organizing your AWS resources. Tags can help you
manage, identify, organize, search for, and filter resources. For more information, see Tagging
your AWS resources.

target variable

The value that you are trying to predict in supervised ML. This is also referred to as an outcome
variable. For example, in a manufacturing setting the target variable could be a product defect.

task list

A tool that is used to track progress through a runbook. A task list contains an overview of
the runbook and a list of general tasks to be completed. For each general task, it includes the
estimated amount of time required, the owner, and the progress.

test environment

See environment.

training

To provide data for your ML model to learn from. The training data must contain the correct
answer. The learning algorithm finds patterns in the training data that map the input data
attributes to the target (the answer that you want to predict). It outputs an ML model that
captures these patterns. You can then use the ML model to make predictions on new data for
which you don’t know the target.

transit gateway

A network transit hub that you can use to interconnect your VPCs and on-premises
networks. For more information, see What is a transit gateway in the AWS Transit Gateway
documentation.

trunk-based workflow

An approach in which developers build and test features locally in a feature branch and then
merge those changes into the main branch. The main branch is then built to the development,
preproduction, and production environments, sequentially.

T 90

https://docs.aws.eu/tag-editor/latest/userguide/tagging.html
https://docs.aws.eu/tag-editor/latest/userguide/tagging.html
https://docs.aws.eu/vpc/latest/tgw/what-is-transit-gateway.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

trusted access

Granting permissions to a service that you specify to perform tasks in your organization in AWS
Organizations and in its accounts on your behalf. The trusted service creates a service-linked
role in each account, when that role is needed, to perform management tasks for you. For more
information, see Using AWS Organizations with other AWS services in the AWS Organizations
documentation.

tuning

To change aspects of your training process to improve the ML model's accuracy. For example,
you can train the ML model by generating a labeling set, adding labels, and then repeating
these steps several times under different settings to optimize the model.

two-pizza team

A small DevOps team that you can feed with two pizzas. A two-pizza team size ensures the best
possible opportunity for collaboration in software development.

U

uncertainty

A concept that refers to imprecise, incomplete, or unknown information that can undermine the
reliability of predictive ML models. There are two types of uncertainty: Epistemic uncertainty
is caused by limited, incomplete data, whereas aleatoric uncertainty is caused by the noise and
randomness inherent in the data. For more information, see the Quantifying uncertainty in
deep learning systems guide.

undifferentiated tasks

Also known as heavy lifting, work that is necessary to create and operate an application but
that doesn’t provide direct value to the end user or provide competitive advantage. Examples of
undifferentiated tasks include procurement, maintenance, and capacity planning.

upper environments

See environment.

U 91

https://docs.aws.eu/organizations/latest/userguide/orgs_integrate_services.html
https://docs.aws.eu/prescriptive-guidance/latest/ml-quantifying-uncertainty/concepts.html
https://docs.aws.eu/prescriptive-guidance/latest/ml-quantifying-uncertainty/concepts.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

V

vacuuming

A database maintenance operation that involves cleaning up after incremental updates to
reclaim storage and improve performance.

version control

Processes and tools that track changes, such as changes to source code in a repository.

VPC peering

A connection between two VPCs that allows you to route traffic by using private IP addresses.
For more information, see What is VPC peering in the Amazon VPC documentation.

vulnerability

A software or hardware flaw that compromises the security of the system.

W

warm cache

A buffer cache that contains current, relevant data that is frequently accessed. The database
instance can read from the buffer cache, which is faster than reading from the main memory or
disk.

warm data

Data that is infrequently accessed. When querying this kind of data, moderately slow queries
are typically acceptable.

window function

A SQL function that performs a calculation on a group of rows that relate in some way to the
current record. Window functions are useful for processing tasks, such as calculating a moving
average or accessing the value of rows based on the relative position of the current row.

workload

A collection of resources and code that delivers business value, such as a customer-facing
application or backend process.

V 92

https://docs.aws.eu/vpc/latest/peering/what-is-vpc-peering.html

AWS Prescriptive Guidance Modeling data with Amazon DynamoDB

workstream

Functional groups in a migration project that are responsible for a specific set of tasks. Each
workstream is independent but supports the other workstreams in the project. For example,
the portfolio workstream is responsible for prioritizing applications, wave planning, and
collecting migration metadata. The portfolio workstream delivers these assets to the migration
workstream, which then migrates the servers and applications.

WORM

See write once, read many.

WQF

See AWS Workload Qualification Framework.

write once, read many (WORM)

A storage model that writes data a single time and prevents the data from being deleted or
modified. Authorized users can read the data as many times as needed, but they cannot change
it. This data storage infrastructure is considered immutable.

Z

zero-day exploit

An attack, typically malware, that takes advantage of a zero-day vulnerability.

zero-day vulnerability

An unmitigated flaw or vulnerability in a production system. Threat actors can use this type of
vulnerability to attack the system. Developers frequently become aware of the vulnerability as a
result of the attack.

zero-shot prompting

Providing an LLM with instructions for performing a task but no examples (shots) that can help
guide it. The LLM must use its pre-trained knowledge to handle the task. The effectiveness of
zero-shot prompting depends on the complexity of the task and the quality of the prompt. See
also few-shot prompting.

zombie application

An application that has an average CPU and memory usage below 5 percent. In a migration
project, it is common to retire these applications.

Z 93

	AWS Prescriptive Guidance
	Table of Contents
	Modeling data with Amazon DynamoDB
	Data-modeling process flow
	RACI matrix

	Data-modeling process steps
	Step 1. Identify the use cases and logical data model
	Objectives
	Process
	Tools and resources
	RACI
	Outputs

	Step 2. Create a preliminary cost estimation
	Objective
	Process
	Tools and resources
	RACI
	Outputs

	Step 3. Identify your data access patterns
	Objective
	Process
	Tools and resources
	RACI
	Outputs
	Example

	Step 4. Identify the technical requirements
	Objective
	Process
	Tools and resources
	RACI
	Outputs

	Step 5. Create the DynamoDB data model
	Objective
	Process
	Tools and resources
	RACI
	Outputs
	Example

	Step 6. Create the data queries
	Objective
	Process
	Tools and resources
	RACI
	Outputs
	Examples

	Step 7. Validate the data model
	Objective
	Process
	Tools and resources
	RACI
	Outputs

	Step 8. Review the cost estimation
	Objectives
	Process
	Tools and resources
	RACI
	Outputs

	Step 9. Deploy the data model
	Objective
	Process
	Tools and resources
	RACI
	Outputs
	Example

	Templates
	Business-requirements assessment template
	Technical-requirements assessment template
	Access-patterns template
	Template

	Best practices
	Example of hierarchical data modeling
	Step 1: Identify the use cases and logical data model
	Step 2: Create a preliminary cost estimation
	Step 3: Identify your data-access patterns
	Step 4: Identify the technical requirements
	Step 5: Create a DynamoDB data model
	Storing components in the table
	The GSI1 index
	The GSI2 index

	Step 6: Create data queries
	Step 7: Validate the data model
	Step 8: Review the cost estimation
	Objectives
	Process

	Step 9: Deploy the data model

	Additional resources
	Contributors
	Document history
	AWS Prescriptive Guidance glossary
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

