
Implementing managed PostgreSQL for multi-tenant SaaS applications on
AWS

AWS Prescriptive Guidance

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

AWS Prescriptive Guidance: Implementing managed PostgreSQL for
multi-tenant SaaS applications on AWS

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Table of Contents

Introduction ... 1
Targeted business outcomes .. 1

Selecting a database for a SaaS application ... 3
Choosing between Amazon RDS and Aurora ... 5

Multi-tenant SaaS partitioning models for PostgreSQL ... 7
PostgreSQL silo model .. 8
PostgreSQL pool model .. 9
PostgreSQL bridge model .. 11
Decision matrix ... 12

Row-level security recommendations .. 25
PostgreSQL availability for the pool model .. 27
Best practices ... 29

Compare AWS options for managed PostgreSQL ... 29
Select a multi-tenant SaaS partitioning model ... 29
Use row-level security for pool SaaS partitioning models .. 29

FAQ ... 30
Which managed PostgreSQL options does AWS offer? ... 30
Which service is optimal for SaaS applications? ... 30
Which unique requirements should I consider if I decide to use a PostgreSQL database with a
multi-tenant SaaS application? ... 30
Which models can I use to maintain tenant data isolation with PostgreSQL? 30
How do I maintain tenant data isolation with a single PostgreSQL database that is shared
across multiple tenants? ... 31

Next steps .. 32
Resources .. 33

References .. 33
Partners .. 33

Document history .. 34
Glossary .. 35

... 35
A ... 36
B ... 39
C ... 41
D ... 44

iii

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

E ... 48
F ... 50
G ... 52
H ... 53
I .. 54
L ... 57
M .. 58
O .. 62
P ... 65
Q .. 67
R ... 68
S ... 71
T ... 75
U ... 76
V ... 77
W .. 77
Z ... 78

iv

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Implementing managed PostgreSQL for multi-tenant
SaaS applications on AWS

Tabby Ward and Thomas Davis, Amazon Web Services (AWS)

April 2024 (document history)

When you select a database to store operational data, it is crucial to consider how the data should
be structured, which queries it will answer, how fast it will provide answers, and the resiliency
of the data platform itself. In addition to these general considerations are software as a service
(SaaS) implications for operational data, such as performance isolation, tenant security, and unique
characteristics and design patterns that are typical of data for multi-tenant SaaS applications. This
guide discusses how these factors apply to using a PostgreSQL database on Amazon Web Services
(AWS) as the primary operational data store for a multi-tenant SaaS application. Specifically, the
guide focuses on two AWS managed PostgreSQL options: Amazon Aurora PostgreSQL-Compatible
Edition and Amazon Relational Database Service (Amazon RDS) for PostgreSQL.

Targeted business outcomes

This guidance provides a detailed analysis of best practices for multi-tenant SaaS applications
using Aurora PostgreSQL-Compatible and Amazon RDS for PostgreSQL. We recommend that
you use the design patterns and concepts provided in this guide to inform and standardize your
implementation of Aurora PostgreSQL-Compatible or Amazon RDS for PostgreSQL for your multi-
tenant SaaS applications.

This prescriptive guidance helps achieve the following business outcomes:

• Choosing the most optimal AWS managed PostgreSQL option for your use case – This
guidance compares relational and non-relational options for database usage with SaaS
applications. It also discusses which use cases are most optimal for Aurora PostgreSQL-
Compatible and Amazon RDS for PostgreSQL. This information will assist in selecting the best
option for your SaaS application.

• Enforcement of SaaS best practices through the adoption of a SaaS partitioning model –
This guide discusses and compares three broad SaaS partitioning models that are applicable to
a PostgreSQL database management system (DBMS): pool, bridged, and silo models, and their
variations. These approaches capture SaaS best practices and provide flexibility when designing

Targeted business outcomes 1

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

a SaaS application. The enforcement of a SaaS partitioning model is a crucial part of preserving
best practices.

• Effective use of RLS in pool SaaS partitioning models – Row-level security (RLS) supports the
enforcement of tenant data isolation within a single PostgreSQL table by restricting the rows
that can be viewed based on the user or a context variable. When you use the pool partitioning
model, RLS is required to prevent cross-tenant access.

Targeted business outcomes 2

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Selecting a database for a SaaS application

For many multi-tenant SaaS applications, selecting an operational database can be distilled into a
choice between relational and non-relational databases, or a combination of the two. To make your
decision, consider these high-level application data requirements and characteristics:

• Data model of the application

• Access patterns for the data

• Database latency requirements

• Data integrity and transactional integrity requirements (atomicity, consistency, isolation, and
durability, or ACID)

• Cross-Region availability and recovery requirements

The following table lists application data requirements and characteristics, and discusses them
in the context of AWS database offerings: Aurora PostgreSQL-Compatible and Amazon RDS for
PostgreSQL (relational), and Amazon DynamoDB (non-relational). You can reference this matrix
when you’re trying to decide between relational and non-relational operational database offerings.

SaaS application data requirements and characteristicsDatabases

Data model Access
patterns

Latency
requireme
nts

Data and
transactional
integrity

Cross-Region
availability
and recovery

Relational

(Aurora
PostgreSQL-
Compatible
and Amazon
RDS for
PostgreSQL)

Relationa
l or highly
normalized.

Doesn’t
have to be
thoroughl
y planned
beforehand.

Preferabl
y higher
latency
tolerance;
can achieve
lower
latencies
by default
with Aurora
and by
implement

High data
and transacti
onal integrity
maintained
by default.

In Amazon
RDS, you can
create a read
replica for
cross-Reg
ion scaling
and failover.
 Aurora
mostly
automates
this process.

3

https://aws.amazon.com/blogs/database/aurora-postgresql-disaster-recovery-solutions-using-amazon-aurora-global-database/
https://aws.amazon.com/blogs/database/aurora-postgresql-disaster-recovery-solutions-using-amazon-aurora-global-database/
https://aws.amazon.com/blogs/database/aurora-postgresql-disaster-recovery-solutions-using-amazon-aurora-global-database/
https://aws.amazon.com/blogs/database/aurora-postgresql-disaster-recovery-solutions-using-amazon-aurora-global-database/

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

ing read
replicas,
caching,
and similar
features.

For active-ac
tive configura
tions across
multiple AWS
Regions, you
can use write
forwarding
in conjuncti
on with
Aurora global
databases.

Non-relat
ional

(Amazon
DynamoDB)

Usually
denormali
zed. These
databases
take
advantage
of patterns
for modeling
many-to-m
any relations
hips, large
items, and
time series
data.

All access
patterns
(queries) for
data must be
thoroughly
understoo
d before a
data model is
produced.

Very low
latency with
options such
as Amazon
DynamoDB
Accelerator
(DAX) able
to improve
performance
even further.

Optional
transactional
integrity at
the cost of
performan
ce. Data
integrity
 concerns are
shifted to the
application.

Easy cross-
Region
recovery and
active-active
configuration
with global
tables. (ACID
compliance
is achievabl
e only in a
single AWS
Region.)

Some multi-tenant SaaS applications might have unique data models or special circumstances
that are better served by databases not included in the previous table. For example, time series
datasets, highly connected datasets, or maintaining a centralized transaction ledger might
necessitate using a different type of database. Analyzing all possibilities is beyond the scope of this
guide. For a comprehensive list of AWS database offerings and how they can fulfill different use
cases at a high level, see the Database section of the Overview of Amazon Web Services whitepaper.

The remainder of this guide focuses on AWS relational database services that support PostgreSQL:
Amazon RDS and Aurora PostgreSQL-Compatible. DynamoDB requires a different approach to

4

https://docs.aws.eu/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-write-forwarding.html
https://docs.aws.eu/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-write-forwarding.html
https://docs.aws.eu/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.eu/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-adjacency-graphs.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-adjacency-graphs.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-adjacency-graphs.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-use-s3-too.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-use-s3-too.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-time-series.html
https://docs.aws.eu/amazondynamodb/latest/developerguide/bp-time-series.html
https://docs.aws.eu/whitepapers/latest/aws-overview/database.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

optimize for SaaS applications, which is beyond the scope of this guide. For more information
about DynamoDB, see the AWS blog post Partitioning Pooled Multi-Tenant SaaS Data with Amazon
DynamoDB.

Choosing between Amazon RDS and Aurora

In most cases, we recommend using Aurora PostgreSQL-Compatible over Amazon RDS for
PostgreSQL. The following table shows the factors that you should consider when deciding
between these two options.

DBMS component Amazon RDS for PostgreSQL Aurora PostgreSQL-Compati
ble

Scalability Replication lag of minutes,
maximum of 5 read replicas

Replication lag under a
minute (typically less than 1
second with global databases
), maximum of 15 read
replicas

Crash recovery Checkpoints 5 minutes
apart (by default), can slow
database performance

Asynchronous recovery with
parallel threads for rapid
recovery

Failover 60-120 seconds in addition to
crash recovery time

Usually about 30 seconds
(including crash recovery)

Storage Maximum IOPS of 256,000 IOPS constrained only by
Aurora instance size and
capacity

High availability and
disaster recovery

Two Availability Zones with a
standby instance, cross-Reg
ion failover to read replica or
copied backups

Three Availability Zones by
default, cross-Region failover
with Aurora global databases
, write forwarding across
AWS Regions for active-active
configurations

Choosing between Amazon RDS and Aurora 5

https://aws.amazon.com/blogs/apn/partitioning-pooled-multi-tenant-saas-data-with-amazon-dynamodb/
https://aws.amazon.com/blogs/apn/partitioning-pooled-multi-tenant-saas-data-with-amazon-dynamodb/
https://docs.aws.eu/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-write-forwarding.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

DBMS component Amazon RDS for PostgreSQL Aurora PostgreSQL-Compati
ble

Backup During backup window, can
impact performance

Automatic incremental
backups, no performance
impact

Database instance classes See list of Amazon RDS
instance classes

See list of Aurora instance
classes

In all the categories described in the previous table, Aurora PostgreSQL-Compatible is usually the
better option. However, Amazon RDS for PostgreSQL might still make sense for small to medium
workloads, because it has a greater selection of instance classes that might provide a more cost-
effective option at the expense of Aurora’s more robust feature set.

Choosing between Amazon RDS and Aurora 6

https://docs.aws.eu/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.eu/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.eu/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://docs.aws.eu/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Multi-tenant SaaS partitioning models for PostgreSQL

The best method for accomplishing multi-tenancy depends on the requirements for your SaaS
application. The following sections demonstrate partitioning models for successfully implementing
multi-tenancy in PostgreSQL.

Note

The models discussed in this section are applicable to both Amazon RDS for PostgreSQL
and Aurora PostgreSQL-Compatible. References to PostgreSQL in this section apply to both
services.

There are three high-level models that you can use in PostgreSQL for SaaS partitioning: silo,
bridge, and pool. The following image summarizes the trade-offs between the silo and pool
models. The bridge model is a hybrid of the silo and pool models.

Partitioning model Advantages Disadvantages

Silo • Compliance alignment

• No cross-tenant impact

• Tenant-level tuning

• Tenant-level availability

• Compromised agility

• No centralized managemen
t

• Deployment complexity

• Cost

Pool • Agility

• Cost optimization

• Centralized management

• Simplified deployment

• Cross-tenant impact

• Compliance challenges

• All or nothing availability

Bridge • Some compliance
alignment

• Agility

• Cost optimization

• Some compliance challenge
s

• All or nothing availability
(mostly)

• Cross-tenant impact

7

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Partitioning model Advantages Disadvantages

• Centralized management • Deployment complexity

The following sections discuss each model in more detail.

Partitioning models:

• PostgreSQL silo model

• PostgreSQL pool model

• PostgreSQL bridge model

• Decision matrix

PostgreSQL silo model

The silo model is implemented by provisioning a PostgreSQL instance for each tenant in an
application. The silo model excels at tenant performance and security isolation, and completely
eliminates the noisy neighbor phenomenon. The noisy neighbor phenomenon occurs when one
tenant’s usage of a system affects the performance of another tenant. The silo model lets you
tailor performance specifically to each tenant and potentially limit outages to a specific tenant’s
silo. However, what generally drives adoption of a silo model is strict security and regulatory
constraints. These constraints can be motivated by SaaS customers. For example, SaaS customers
might demand that their data be isolated due to internal constraints, and SaaS providers might
offer such a service for an additional fee.

PostgreSQL silo model 8

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Although the silo model might be necessary in certain cases, it has many drawbacks. It is often
difficult to use the silo model in a cost-effective manner, because managing resource consumption
across multiple PostgreSQL instances can be complicated. Furthermore, the distributed nature
of database workloads in this model makes it more difficult to maintain a centralized view of
tenant activity. Managing so many independently operated workloads increases operational
and administrative overhead. The silo model also makes tenant onboarding more complicated
and time-consuming, because you have to provision tenant-specific resources. Furthermore, the
entire SaaS system can be harder to scale, because the ever-increasing number of tenant-specific
PostgreSQL instances will demand more operational time to administer. One last consideration
is that an application or a data access layer will have to maintain a mapping of tenants to their
associated PostgreSQL instances, which adds to the complexity of implementing this model.

PostgreSQL pool model

The pool model is implemented by provisioning a single PostgreSQL instance (Amazon RDS
or Aurora) and using row-level security (RLS) to maintain tenant data isolation. RLS policies
restrict which rows in a table are returned by SELECT queries or which rows are affected by
INSERT, UPDATE, and DELETE commands. The pool model centralizes all tenant data in a
single PostgreSQL schema, so it is significantly more cost-effective and requires less operational
overhead to maintain. Monitoring this solution is also significantly simpler due to its centralization.
However, monitoring tenant-specific impacts in the pool model usually requires some additional
instrumentation in the application. This is because PostgreSQL by default isn’t aware of which
tenant is consuming resources. Tenant onboarding is simplified because no new infrastructure

PostgreSQL pool model 9

https://aws.amazon.com/blogs/database/multi-tenant-data-isolation-with-postgresql-row-level-security/

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

is required. This agility makes it easier to accomplish rapid and automated tenant onboarding
workflows.

Although the pool model is generally more cost-effective and simpler to administer, it does have
some disadvantages. The noisy neighbor phenomenon cannot be completely eliminated in a
pool model. However, it can be mitigated by ensuring that appropriate resources are available
on the PostgreSQL instance and by using strategies to reduce the load in PostgreSQL, such as
offloading queries to read replicas or to Amazon ElastiCache. Effective monitoring also plays a role
in responding to tenant performance isolation concerns, because application instrumentation can
log and monitor tenant-specific activity. Lastly, some SaaS customers might not find the logical
separation provided by RLS to be sufficient and might ask for additional isolation measures.

PostgreSQL pool model 10

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

PostgreSQL bridge model

The PostgreSQL bridge model is a combination of the pooled and siloed approaches. Like the
pooled model, you provision a single PostgreSQL instance for each tenant. To maintain tenant data
isolation, you use PostgreSQL logical constructs. In the following diagram, PostgreSQL databases
are used to logically separate data.

Note

A PostgreSQL database doesn’t refer to a separate Amazon RDS for PostgreSQL or
Aurora PostgreSQL-Compatible DB instance. Instead, it refers to a logical construct of the
PostgreSQL database management system to separate data.

You can also implement the bridge model by using a single PostgreSQL database, with tenant-
specific schemas in each database, as illustrated in the following diagram.

PostgreSQL bridge model 11

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

The bridge model suffers from the same noisy neighbor and tenant performance isolation
concerns as the pool model. It also incurs some additional operational and provisioning overhead
by requiring either separate databases or schemas to be provisioned on a per-tenant basis. It
requires effective monitoring to respond quickly to tenant performance concerns. It also requires
application instrumentation to monitor tenant-specific usage. Overall, the bridge model can be
viewed as an alternative to RLS that slightly augments the tenant onboarding effort by requiring
new PostgreSQL databases or schemas. As with the silo model, an application or a data access layer
will have to maintain a mapping of tenants to their associated PostgreSQL databases or schemas.

Decision matrix

To decide which multi-tenant SaaS partitioning model you should use with PostgreSQL, consult the
following decision matrix. The matrix analyzes these four partitioning options:

• Silo – A separate PostgreSQL instance or cluster for each tenant.

Decision matrix 12

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

• Bridge with separate databases – A separate database for each tenant in a single PostgreSQL
instance or cluster.

• Bridge with separate schemas – A separate schema for each tenant in a single PostgreSQL
database, in a single PostgreSQL instance or cluster.

• Pool – Shared tables for tenants in a single instance and schema.

Silo Bridge with
separate
databases

Bridge with
separate
schemas

Pool

Use case Isolation of data
with full control
of resource
usage is a key
requirement,
or you have
very large and
very performan
ce-sensitive
tenants.

Isolation of
data is a key
requirement,
and limited
or no cross-
reference of
tenants’ data is
required.

Moderate
number of
tenants with
a moderate
amount of
data. This is the
preferred model
if you have to
cross-reference
tenants’ data.

Large number of
tenants with less
data per tenant.

New tenant
onboarding
agility

Very slow. (A
new instance
or cluster is
required for
each tenant.)

Moderately
slow. (Requires
creating a new
database for
each tenant to
store schema
objects.)

Moderately
slow. (Requires
creating a new
schema for each
tenant to store
objects.)

Fastest option.
(Minimal setup is
required.)

Database
connection
pool configura
tion effort and
efficiency

Significant effort
required. (One
connection pool
per tenant.)

Less efficient
. (No database

Significant effort
required. (One
connection
pool configura
tion per tenant
unless you use

Less effort
required. (One
connection pool
configuration for
all tenants.)

Least effort
required.

Most efficient.
(One connectio
n pool for
all tenants

Decision matrix 13

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Silo Bridge with
separate
databases

Bridge with
separate
schemas

Pool

connection
sharing between
tenants.)

Amazon RDS
Proxy.)

Less efficient
. (No database
connection
sharing between
tenants and
total number
of connections.
Usage across
all tenants is
limited based on
the DB instance
class.)

Moderatel
y efficient.
(Connection
reuse through
the SET ROLE
or SET SCHEMA
command in
session pool
mode only. SET
commands also
cause session
pinning when
using Amazon
RDS Proxy,
but the client
connection
pools can be
eliminated and
direct connectio
ns can be made
for each request
for efficiency.)

and efficient
connection
reuse across
all tenants.
Database
connection
limits are based
on the DB
instance class.)

Decision matrix 14

https://docs.aws.eu/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html
https://docs.aws.eu/AmazonRDS/latest/AuroraUserGuide/rds-proxy.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Silo Bridge with
separate
databases

Bridge with
separate
schemas

Pool

Database
maintenan
ce (vacuum
management)
and resource
usage

Simpler
management.

Medium
complexity.
(Might lead to
high resource
consumpti
on, because
a vacuum
worker has to be
started for each
database after
vacuum_na
ptime , which
leads to high
autovacuum
launcher CPU
usage. There
might also
be additiona
l overhead
associated with
vacuuming the
PostgreSQL
system catalog
tables for each
database.)

Large PostgreSQ
L system catalog
tables. (Total
pg_catalog
size in tens of
GBs, depending
on number
of tenants
and relations.
Likely to require
modifications
to vacuuming
-related
parameters to
control table
bloat.)

Tables might be
large, depending
on the number
of tenants and
data per tenant.
(Likely to require
modifications
to vacuuming
-related
parameters to
control table
bloat.)

Extensions
management
effort

Significant
effort (for
each database
in separate
instances).

Significant
effort (at each
database level).

Minimal effort
(one time in
the common
database).

Minimal effort
(one time in
the common
database).

Decision matrix 15

https://www.postgresql.org/docs/current/routine-vacuuming.html
https://www.postgresql.org/docs/current/routine-vacuuming.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Silo Bridge with
separate
databases

Bridge with
separate
schemas

Pool

Change
deployment
effort

Significant
effort. (Connect
to each separate
instance and roll
out changes.)

Significant
effort. (Connect
to each database
and schema,
and roll out
changes.)

Moderate
effort. (Connect
to common
database
and roll out
changes for each
schema.)

Minimal effort.
(Connect
to common
database
and roll out
changes.)

Change
deployment –
scope of impact

Minimal. (Single
tenant affected.)

Minimal. (Single
tenant affected.)

Minimal. (Single
tenant affected.)

Very large. (All
tenants affected.
)

Query
performance
management
and effort

Manageabl
e query
performance.

Manageabl
e query
performance.

Manageabl
e query
performance.

Significant effort
likely required to
maintain query
performance.
(Over time,
queries might
run more slowly
due to the
increased size
of tables. You
can use table
partitioning
and database
sharding to
maintain
performance.)

Decision matrix 16

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Silo Bridge with
separate
databases

Bridge with
separate
schemas

Pool

Cross-tenant
resource impact

No impact. (No
resource sharing
among tenants.)

Moderate
impact. (Tenants
share common
resources such
as instance CPU
and memory.)

Moderate
impact. (Tenants
share common
resources such
as instance CPU
and memory.)

Heavy impact.
(Tenants affect
one another
in terms of
resources, lock
conflicts, and so
on.)

Tenant-le
vel tuning
(for example,
creation of
additional
indexes per
tenant or DB
parameter
tweaking for
a particular
tenant)

Possible. Somewhat
possible.
(Schema-level
changes can
be made for
each tenant,
but database
parameters are
global across all
tenants.)

Somewhat
possible.
(Schema-level
changes can
be made for
each tenant,
but database
parameters are
global across all
tenants.)

Not possible.
(Tables are
shared by all
tenants.)

Decision matrix 17

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Silo Bridge with
separate
databases

Bridge with
separate
schemas

Pool

Rebalance effort
for performan
ce-sensitive
tenants

Minimal.
(No need to
rebalance. Scale
server and I/
O resources
to handle this
scenario.)

Moderate. (Use
logical replicati
on or pg_dump
to export the
database, but
downtime might
be lengthy
depending
on data size.
You can use
the transport
able database
feature in
Amazon RDS for
PostgreSQL to
copy databases
between
instances faster.)

Moderate
but likely
involves lengthy
downtime. (Use
logical replicati
on or pg_dump
to export the
schema, but
downtime might
be lengthy
depending on
data size.)

Significant,
because all
tenants share
the same tables.
(Sharding
the database
requires copying
everything to
another instance
and an additiona
l step to clean
up tenant data.)

Most likely
requires a
change in
application
logic.

Database
downtime for
major version
upgrades

Standard
downtime.
(Depends on
PostgreSQL
system catalog
size.)

Longer
downtime likely.
(Dependin
g on system
catalog size,
the time will
vary. PostgreSQ
L system catalog
tables are also
duplicated
across databases
)

Longer
downtime likely.
(Depending on
PostgreSQL
system catalog
size, the time
will vary.)

Standard
downtime.
(Depends on
PostgreSQL
system catalog
size.)

Decision matrix 18

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Silo Bridge with
separate
databases

Bridge with
separate
schemas

Pool

Administration
overhead (for
example, for
database log
analysis or
backup job
monitoring)

Significant effort Minimal effort. Minimal effort. Minimal effort.

Tenant-level
availability

Highest. (Each
tenant fails
and recovers
independently.)

Higher scope
of impact. (All
tenants fail
and recover
together in case
of hardware or
resource issues.)

Higher scope
of impact. (All
tenants fail
and recover
together in case
of hardware or
resource issues.)

Higher scope
of impact. (All
tenants fail
and recover
together in case
of hardware or
resource issues.)

Tenant-level
backup and
recovery effort

Least effort.
(Each tenant
can be backed
up and restored
independently.)

Moderate effort.
(Use logical
export and
import for each
tenant. Some
coding and
automation are
required.)

Moderate effort.
(Use logical
export and
import for each
tenant. Some
coding and
automation are
required.)

Significant
effort. (All
tenants share
the same
tables.)

Tenant-level
point-in-time
recovery effort

Minimal effort.
(Use point-in
time recovery by
using snapshots,
or use backtrack
ing in Amazon
Aurora.)

Moderate effort.
(Use snapshot
restore, followed
by export/im
port. However,
this will be a
slow operation.)

Moderate effort.
(Use snapshot
restore, followed
by export/im
port. However,
this will be a
slow operation.)

Significant effort
and complexity.

Decision matrix 19

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Silo Bridge with
separate
databases

Bridge with
separate
schemas

Pool

Uniform schema
name

Same schema
name for each
tenant.

Same schema
name for each
tenant.

Different
schema for each
tenant.

Common
schema.

Per-tenant
customization
(for example,
additional table
columns for a
specific tenant)

Possible. Possible. Possible. Complicat
ed (because
all tenants
share the same
tables).

Catalog
managemen
t efficiency at
object-relational
mapping (ORM)
layer (for
example, Ruby)

Efficient
(because the
client connectio
n is specific for a
tenant).

Efficient
(because the
client connectio
n is specific to a
database).

Moderatel
y efficient.
(Depending
on the ORM
used, user/role
security model,
and search_pa
th configura
tion, the client
sometimes
caches the
metadata for
all tenants,
leading to high
DB connection
memory usage.)

Efficient
(because all
tenants share
the same
tables).

Decision matrix 20

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Silo Bridge with
separate
databases

Bridge with
separate
schemas

Pool

Consolidated
tenant reporting
effort

Significant
effort. (You have
to use foreign
data wrappers
[FDWs] to
consolidate data
in all tenants
or extract,
transform,
and load [ETL]
to another
reporting
 database.)

Significant
effort. (You have
to use FDWs to
consolidate data
in all tenants or
ETL to another
reporting
database.)

Moderate
effort. (You can
aggregate data
in all schemas by
using unions.)

Minimal effort.
(All tenant
data is in the
same tables,
so reporting is
simple.)

Tenant-sp
ecific read-only
instance for
reporting (for
example, based
on subscription)

Least effort.
(Create a read
replica.)

Moderate
effort. (You
can use logical
replication or
AWS Database
Migration
Service [AWS
DMS] to
configure.)

Moderate effort.
(You can use
logical replicati
on or AWS DMS
to configure.)

Complicat
ed (because
all tenants
share the same
tables).

Decision matrix 21

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Silo Bridge with
separate
databases

Bridge with
separate
schemas

Pool

Data isolation Best. Better. (You
can manage
database-level
permissions by
using PostgreSQ
L roles.)

Better. (You
can manage
schema-level
permissions by
using PostgreSQ
L roles.)

Worse. (Because
all tenants
share the same
tables, you have
to implement
features such
as row-level
security [RLS]
for tenant
isolation.)

Tenant-sp
ecific storage
encryption key

Possible. (Each
PostgreSQL
cluster can have
its own AWS Key
Management
Service [AWS
KMS] key
for storage
encryption.)

Not possible. (All
tenants share
the same KMS
key for storage
encryption.)

Not possible. (All
tenants share
the same KMS
key for storage
encryption.)

Not possible. (All
tenants share
the same KMS
key for storage
encryption.)

Using AWS
Identity
and Access
Managemen
t (IAM) for
database
authentication
for each tenant

Possible. Possible. Possible (by
having separate
PostgreSQL
users for each
schema).

Not possible
(because tables
are shared by all
tenants).

Infrastructure
cost

Highest (because
nothing is
shared).

Moderate. Moderate. Lowest.

Decision matrix 22

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Silo Bridge with
separate
databases

Bridge with
separate
schemas

Pool

Data duplicati
on and storage
usage

Highest
aggregate across
all tenants.
(PostgreSQL
system catalog
tables and
the applicati
on’s static and
common data
are duplicate
d across all
tenants.)

Highest
aggregate across
all tenants.
(PostgreSQL
system catalog
tables and
the applicati
on’s static and
common data
are duplicate
d across all
tenants.)

Moderate.
(The applicati
on’s static and
common data
can be in a
common schema
and accessed by
other tenants.)

Minimal. (No
duplication
of data. The
application’s
static and
common data
can be in the
same schema.)

Tenant-centric
monitoring
(quickly find out
which tenant is
causing issues)

Least effort.
(Because
each tenant
is monitored
separately, it’s
easy to check
the activity of a
specific tenant.)

Moderate
effort. (Because
all tenants
share the
same physical
resource, you
have to apply
additional
filtering to check
the activity of a
specific tenant.)

Moderate
effort. (Because
all tenants
share the
same physical
resource, you
have to apply
additional
filtering to check
the activity of a
specific tenant.)

Significant
effort. (Because
all tenants share
all resources,
including tables,
you have to use
bind variable
capture to check
which tenant
a specific SQL
query belongs
to.)

Decision matrix 23

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Silo Bridge with
separate
databases

Bridge with
separate
schemas

Pool

Centralized
management
and health/ac
tivity monitoring

Significant effort
(to set up central
monitoring
and a central
command
center).

Moderate
effort (because
all tenants
share the same
instance).

Moderate
effort (because
all tenants
share the same
instance).

Minimal effort
(because all
tenants share
the same
resources,
including the
schema).

Chances of
object identifie
r (OID) and
transaction ID
(XID) wraparoun
d

Minimal. High. (Because
OID,XID
is a single
PostgreSQ
L clusterwi
de counter
and there
can be issues
vacuuming
effectively
across physical
databases).

Moderate.
(Because
OID,XID
is a single
PostgreSQL
clusterwide
counter).

High. (For
example, a
single table
can reach the
TOAST OID limit
of 4 billion,
depending on
the number
of out-of-line
columns.)

Decision matrix 24

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Row-level security recommendations

Row-level security (RLS) is required to maintain tenant data isolation in a pooled model with
PostgreSQL. RLS centralizes the enforcement of isolation policies at the database level and
removes the burden of maintaining this isolation from software developers. The most common
way to implement RLS is to enable this feature in the PostgreSQL DBMS. RLS involves filtering
access to rows of data based on a value in a specified column. You can use two methods to filter
access to data:

• A specified column of data in a table is compared to the value of the current PostgreSQL user.
Values in the column that are equivalent to the logged-in PostgreSQL user are accessible to that
user.

• A specified column of data in a table is compared to the value of a runtime variable set by the
application. Values in the column that are equivalent to the runtime variable are accessible
during that session.

The second option is preferred, because the first option requires the creation of a new PostgreSQL
user for each tenant. Instead, a SaaS application that uses PostgreSQL should be responsible for
setting a tenant-specific context at runtime when it queries PostgreSQL. This will have the effect
of enforcing RLS. You can also enable RLS on a table-by-table basis. As a best practice, you should
enable RLS on all tables that contain tenant data.

The following example creates two tables and enables RLS. This example compares a column of
data to the value of the runtime variable app.current_tenant.

-- Create a table for our tenants with indexes on the primary key and the tenant’s name
CREATE TABLE tenant (
 tenant_id UUID DEFAULT uuid_generate_v4() PRIMARY KEY,
 name VARCHAR(255) UNIQUE,
 status VARCHAR(64) CHECK (status IN ('active', 'suspended', 'disabled')),
 tier VARCHAR(64) CHECK (tier IN ('gold', 'silver', 'bronze'))
);

-- Create a table for users of a tenant
CREATE TABLE tenant_user (
 user_id UUID DEFAULT uuid_generate_v4() PRIMARY KEY,
 tenant_id UUID NOT NULL REFERENCES tenant (tenant_id) ON DELETE RESTRICT,
 email VARCHAR(255) NOT NULL UNIQUE,

25

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

 given_name VARCHAR(255) NOT NULL CHECK (given_name <> ''),
 family_name VARCHAR(255) NOT NULL CHECK (family_name <> '')
);

-- Turn on RLS
ALTER TABLE tenant ENABLE ROW LEVEL SECURITY;

-- Restrict read and write actions so tenants can only see their rows
-- Cast the UUID value in tenant_id to match the type current_setting
-- This policy implies a WITH CHECK that matches the USING clause
CREATE POLICY tenant_isolation_policy ON tenant
USING (tenant_id = current_setting('app.current_tenant')::UUID);

-- And do the same for the tenant users
ALTER TABLE tenant_user ENABLE ROW LEVEL SECURITY;

CREATE POLICY tenant_user_isolation_policy ON tenant_user
USING (tenant_id = current_setting('app.current_tenant')::UUID);

For more information, see the blog post Multi-tenant data isolation with PostgreSQL Row Level
Security. The AWS SaaS Factory team also has some examples in GitHub to assist in implementing
RLS.

26

https://aws.amazon.com/blogs/database/multi-tenant-data-isolation-with-postgresql-row-level-security/
https://aws.amazon.com/blogs/database/multi-tenant-data-isolation-with-postgresql-row-level-security/
https://github.com/aws-samples/aws-saas-factory-postgresql-rls

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

PostgreSQL availability for the pool model

Pool models by their nature have only a single PostgreSQL instance. Therefore, designing your
application for high availability is crucial. A failure or outage of a pooled database results in your
application being degraded or becoming inaccessible for all your tenants.

Amazon RDS for PostgreSQL DB instances can be made redundant across two Availability Zones
by enabling the high-availability feature. For more information, see High availability (Multi-AZ)
for Amazon RDS in the Amazon RDS documentation. For cross-Region failover, you can create a
read replica in a different AWS Region. (This read replica has to be promoted as part of a failover
process.) In addition, you can replicate backups replicated across AWS Regions for recovery. For
more information, see Replicating automated backups to another AWS Region in the Amazon RDS
documentation.

Aurora PostgreSQL-Compatible automatically backs up data in a way that can sustain the failure of
multiple Availability Zones. (See High availability for Amazon Aurora in the Aurora documentation.)
To make Aurora more resilient and recover faster, you can create Aurora read replicas in other
Availability Zones. You can use Aurora global databases to replicate data into five additional
AWS Regions for cross-Region recovery and automatic failover. (See Using Amazon Aurora global
databases in the Aurora documentation.) Additionally, you can enable write forwarding with Aurora
global databases to achieve high availability across multiple AWS Regions.

27

https://docs.aws.eu/AmazonRDS/latest/UserGuide/Concepts.MultiAZ.html
https://docs.aws.eu/AmazonRDS/latest/UserGuide/Concepts.MultiAZ.html
https://docs.aws.eu/AmazonRDS/latest/UserGuide/USER_ReplicateBackups.html
https://docs.aws.eu/AmazonRDS/latest/AuroraUserGuide/Concepts.AuroraHighAvailability.html
https://docs.aws.eu/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.eu/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html
https://docs.aws.eu/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-write-forwarding.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Regardless of whether you’re using Amazon RDS for PostgreSQL or Aurora PostgreSQL-
Compatible, we recommend that you implement high availability features to mitigate the impact
of any outages for all multi-tenant SaaS applications that use a pool model.

28

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Best practices

This section lists some of the high-level takeaways from this guide. For detailed discussions on each
point, follow the links to the corresponding sections.

Compare AWS options for managed PostgreSQL

AWS offers two primary ways to run PostgreSQL in a managed environment. (In this context,
managed means that the PostgreSQL infrastructure and DBMS are partially or completely
supported by an AWS service.) Managed PostgreSQL options on AWS have the benefit of
automating backups, failover, optimization, and some administration of PostgreSQL. As managed
options, AWS offers Amazon Aurora PostgreSQL-Compatible Edition and Amazon Relational
Database Service (Amazon RDS) for PostgreSQL. You can select the best choice from these two
models by analyzing your PostgreSQL use case. For more information, see the section Choosing
between Amazon RDS and Aurora in this guide.

Select a multi-tenant SaaS partitioning model

You can choose from three SaaS partitioning models that are applicable to PostgreSQL: silo,
bridge, and pool. Each model has advantages and disadvantages, and you should choose the most
optimal model depending on your use case. Amazon RDS for PostgreSQL and Aurora PostgreSQL-
Compatible support all three models. Choosing a model is critical to maintaining tenant data
isolation in your SaaS applications. For a detailed discussion of these models, see the section Multi-
tenant SaaS partitioning models for PostgreSQL in this guide.

Use row-level security for pool SaaS partitioning models

Row-level security (RLS) is required to maintain tenant data isolation in a pool model with
PostgreSQL. This is because there is no logical separation between infrastructure, PostgreSQL
databases, or schemas on a per-tenant basis in a pool model. RLS centralizes the enforcement of
isolation policies at the database level and removes the burden of maintaining this isolation from
software developers. You can use RLS to limit database operations to a specific tenant. For more
information and an example, see the section Row-level security recommendations in this guide.

Compare AWS options for managed PostgreSQL 29

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

FAQ

This section provides answers to commonly raised questions about implementing managed
PostgreSQL in multi-tenant SaaS applications.

Which managed PostgreSQL options does AWS offer?

AWS offers Amazon Aurora PostgreSQL-Compatible and Amazon Relational Database Service
(Amazon RDS) for PostgreSQL. AWS also has a broad catalog of managed database offerings.

Which service is optimal for SaaS applications?

You can use both Aurora PostgreSQL-Compatible and Amazon RDS for PostgreSQL for SaaS
applications and all the SaaS partitioning models discussed in this guide. These two services
have differences in scalability, crash recovery, failover, storage options, high availability, disaster
recovery, backup, and the instance classes available for each option. The optimal choice will
depend on your specific use case. Use the decision matrix in this guide to choose the best option
for your use case.

Which unique requirements should I consider if I decide to use
a PostgreSQL database with a multi-tenant SaaS application?

As with any data store used with a SaaS application, the most important consideration is the
method for maintaining tenant data isolation. As discussed in this guide, there are multiple ways
you can achieve tenant data isolation with AWS managed PostgreSQL offerings. Additionally, you
should consider performance isolation on a per-tenant basis for any PostgreSQL implementations.

Which models can I use to maintain tenant data isolation with
PostgreSQL?

You can use the silo, bridge, and pool models as SaaS partitioning strategies to maintain tenant
data isolation. For a discussion of these models and how they can be applied to PostgreSQL, see
the section Multi-tenant SaaS partitioning models for PostgreSQL in this guide.

Which managed PostgreSQL options does AWS offer? 30

https://docs.aws.eu/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraPostgreSQL.html
https://docs.aws.eu/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
https://docs.aws.eu/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
https://aws.amazon.com/products/databases/

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

How do I maintain tenant data isolation with a single
PostgreSQL database that is shared across multiple tenants?

PostgreSQL supports a row-level security (RLS) feature that you can use to enforce tenant data
isolation in a single PostgreSQL database or instance. Additionally, you can provision separate
PostgreSQL databases per tenant in a single instance, or create schemas on a per-tenant basis to
achieve this goal. For the advantages and disadvantages of these approaches, see the section Row-
level security recommendations in this guide.

How do I maintain tenant data isolation with a single PostgreSQL database that is shared across
multiple tenants?

31

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Next steps

AWS offers two options for operating managed PostgreSQL: Aurora PostgreSQL-Compatible and
Amazon RDS for PostgreSQL. We recommend that you evaluate the two services and choose
the option that best supports your specific use case for your multi-tenant SaaS applications.
Conforming to a SaaS partitioning model can ensure that a SaaS application that uses PostgreSQL
adheres strictly to best practices to maintain tenancy. The SaaS silo, bridge, and pool partitioning
models support many SaaS use cases. These models provide varying advantages among factors
such as performance isolation, operational overhead, and tenant security.

Next steps:

• Evaluate Aurora PostgreSQL-Compatible and Amazon RDS for PostgreSQL, and pick the best
option for your SaaS application.

• Select a SaaS partitioning model that meets the requirements for your application: silo, bridge,
or pool.

• Implement PostgreSQL in accordance with your selected SaaS partitioning model.

32

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Resources

References

• SaaS Storage Strategies: Building a Multitenant Storage Model on AWS (AWS whitepaper)

• Cross-Region disaster recovery using Amazon Aurora Global Database for Amazon Aurora
PostgreSQL (AWS blog post)

• Multitenant data isolation with PostgreSQL Row Level Security (AWS blog post)

• Working with Amazon Aurora PostgreSQL (Aurora documentation)

• PostgreSQL on Amazon RDS (Amazon RDS documentation)

Partners

• Amazon Aurora for PostgreSQL Partners

• Amazon RDS for PostgreSQL Partners

References 33

https://docs.aws.eu/whitepapers/latest/multi-tenant-saas-storage-strategies/multi-tenant-saas-storage-strategies.html
https://aws.amazon.com/blogs/database/cross-region-disaster-recovery-using-amazon-aurora-global-database-for-amazon-aurora-postgresql/
https://aws.amazon.com/blogs/database/cross-region-disaster-recovery-using-amazon-aurora-global-database-for-amazon-aurora-postgresql/
https://aws.amazon.com/blogs/database/multi-tenant-data-isolation-with-postgresql-row-level-security/
https://docs.aws.eu/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraPostgreSQL.html
https://docs.aws.eu/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
https://partners.amazonaws.com/search/partners?facets=Product%20%3A%20Database%20%3A%20Amazon%20Aurora%20PostgreSQL
https://partners.amazonaws.com/search/partners?facets=Product%20%3A%20Database%20%3A%20Amazon%20RDS%20for%20PostgreSQL

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Document history

The following table describes significant changes to this guide. If you want to be notified about
future updates, you can subscribe to an RSS feed.

Change Description Date

Update Updates to reflect the
availability of write forwardin
g in Aurora.

April 29, 2024

Update Updated the Amazon RDS and
Aurora comparison table.

October 21, 2022

— Initial publication September 30, 2021

34

https://docs.aws.eu/prescriptive-guidance/latest/saas-multitenant-managed-postgresql/saas-multitenant-managed-postgresql.rss
https://docs.aws.amazon.com/prescriptive-guidance/latest/saas-multitenant-managed-postgresql/db-selection.html#relational
https://docs.aws.amazon.com/prescriptive-guidance/latest/saas-multitenant-managed-postgresql/db-selection.html#relational

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

AWS Prescriptive Guidance glossary

The following are commonly used terms in strategies, guides, and patterns provided by AWS
Prescriptive Guidance. To suggest entries, please use the Provide feedback link at the end of the
glossary.

Numbers

7 Rs

Seven common migration strategies for moving applications to the cloud. These strategies build
upon the 5 Rs that Gartner identified in 2011 and consist of the following:

• Refactor/re-architect – Move an application and modify its architecture by taking full
advantage of cloud-native features to improve agility, performance, and scalability. This
typically involves porting the operating system and database. Example: Migrate your on-
premises Oracle database to the Amazon Aurora PostgreSQL-Compatible Edition.

• Replatform (lift and reshape) – Move an application to the cloud, and introduce some level
of optimization to take advantage of cloud capabilities. Example: Migrate your on-premises
Oracle database to Amazon Relational Database Service (Amazon RDS) for Oracle in the AWS
Cloud.

• Repurchase (drop and shop) – Switch to a different product, typically by moving from
a traditional license to a SaaS model. Example: Migrate your customer relationship
management (CRM) system to Salesforce.com.

• Rehost (lift and shift) – Move an application to the cloud without making any changes to
take advantage of cloud capabilities. Example: Migrate your on-premises Oracle database to
Oracle on an EC2 instance in the AWS Cloud.

• Relocate (hypervisor-level lift and shift) – Move infrastructure to the cloud without
purchasing new hardware, rewriting applications, or modifying your existing operations.
You migrate servers from an on-premises platform to a cloud service for the same platform.
Example: Migrate a Microsoft Hyper-V application to AWS.

• Retain (revisit) – Keep applications in your source environment. These might include
applications that require major refactoring, and you want to postpone that work until a later
time, and legacy applications that you want to retain, because there’s no business justification
for migrating them.

35

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

• Retire – Decommission or remove applications that are no longer needed in your source
environment.

A

ABAC

See attribute-based access control.

abstracted services

See managed services.

ACID

See atomicity, consistency, isolation, durability.

active-active migration

A database migration method in which the source and target databases are kept in sync (by
using a bidirectional replication tool or dual write operations), and both databases handle
transactions from connecting applications during migration. This method supports migration in
small, controlled batches instead of requiring a one-time cutover. It’s more flexible but requires
more work than active-passive migration.

active-passive migration

A database migration method in which the source and target databases are kept in sync, but
only the source database handles transactions from connecting applications while data is
replicated to the target database. The target database doesn’t accept any transactions during
migration.

aggregate function

A SQL function that operates on a group of rows and calculates a single return value for the
group. Examples of aggregate functions include SUM and MAX.

AI

See artificial intelligence.

AIOps

See artificial intelligence operations.

A 36

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

anonymization

The process of permanently deleting personal information in a dataset. Anonymization can help
protect personal privacy. Anonymized data is no longer considered to be personal data.

anti-pattern

A frequently used solution for a recurring issue where the solution is counter-productive,
ineffective, or less effective than an alternative.

application control

A security approach that allows the use of only approved applications in order to help protect a
system from malware.

application portfolio

A collection of detailed information about each application used by an organization, including
the cost to build and maintain the application, and its business value. This information is key to
the portfolio discovery and analysis process and helps identify and prioritize the applications to
be migrated, modernized, and optimized.

artificial intelligence (AI)

The field of computer science that is dedicated to using computing technologies to perform
cognitive functions that are typically associated with humans, such as learning, solving
problems, and recognizing patterns. For more information, see What is Artificial Intelligence?

artificial intelligence operations (AIOps)

The process of using machine learning techniques to solve operational problems, reduce
operational incidents and human intervention, and increase service quality. For more
information about how AIOps is used in the AWS migration strategy, see the operations
integration guide.

asymmetric encryption

An encryption algorithm that uses a pair of keys, a public key for encryption and a private key
for decryption. You can share the public key because it isn’t used for decryption, but access to
the private key should be highly restricted.

atomicity, consistency, isolation, durability (ACID)

A set of software properties that guarantee the data validity and operational reliability of a
database, even in the case of errors, power failures, or other problems.

A 37

https://docs.aws.eu/prescriptive-guidance/latest/application-portfolio-assessment-guide/introduction.html
https://aws.amazon.com/what-is/artificial-intelligence/
https://docs.aws.eu/prescriptive-guidance/latest/migration-operations-integration/aiops.html
https://docs.aws.eu/prescriptive-guidance/latest/migration-operations-integration/aiops.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

attribute-based access control (ABAC)

The practice of creating fine-grained permissions based on user attributes, such as department,
job role, and team name. For more information, see ABAC for AWS in the AWS Identity and
Access Management (IAM) documentation.

authoritative data source

A location where you store the primary version of data, which is considered to be the most
reliable source of information. You can copy data from the authoritative data source to other
locations for the purposes of processing or modifying the data, such as anonymizing, redacting,
or pseudonymizing it.

Availability Zone

A distinct location within an AWS Region that is insulated from failures in other Availability
Zones and provides inexpensive, low-latency network connectivity to other Availability Zones in
the same Region.

AWS Cloud Adoption Framework (AWS CAF)

A framework of guidelines and best practices from AWS to help organizations develop an
efficient and effective plan to move successfully to the cloud. AWS CAF organizes guidance
into six focus areas called perspectives: business, people, governance, platform, security,
and operations. The business, people, and governance perspectives focus on business skills
and processes; the platform, security, and operations perspectives focus on technical skills
and processes. For example, the people perspective targets stakeholders who handle human
resources (HR), staffing functions, and people management. For this perspective, AWS CAF
provides guidance for people development, training, and communications to help ready the
organization for successful cloud adoption. For more information, see the AWS CAF website and
the AWS CAF whitepaper.

AWS Workload Qualification Framework (AWS WQF)

A tool that evaluates database migration workloads, recommends migration strategies, and
provides work estimates. AWS WQF is included with AWS Schema Conversion Tool (AWS SCT). It
analyzes database schemas and code objects, application code, dependencies, and performance
characteristics, and provides assessment reports.

A 38

https://docs.aws.eu/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://aws.amazon.com/cloud-adoption-framework/
https://d1.awsstatic.com/whitepapers/aws_cloud_adoption_framework.pdf

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

B

bad bot

A bot that is intended to disrupt or cause harm to individuals or organizations.

BCP

See business continuity planning.

behavior graph

A unified, interactive view of resource behavior and interactions over time. You can use a
behavior graph with Amazon Detective to examine failed logon attempts, suspicious API
calls, and similar actions. For more information, see Data in a behavior graph in the Detective
documentation.

big-endian system

A system that stores the most significant byte first. See also endianness.

binary classification

A process that predicts a binary outcome (one of two possible classes). For example, your ML
model might need to predict problems such as “Is this email spam or not spam?" or "Is this
product a book or a car?"

bloom filter

A probabilistic, memory-efficient data structure that is used to test whether an element is a
member of a set.

blue/green deployment

A deployment strategy where you create two separate but identical environments. You run the
current application version in one environment (blue) and the new application version in the
other environment (green). This strategy helps you quickly roll back with minimal impact.

bot

A software application that runs automated tasks over the internet and simulates human
activity or interaction. Some bots are useful or beneficial, such as web crawlers that index
information on the internet. Some other bots, known as bad bots, are intended to disrupt or
cause harm to individuals or organizations.

B 39

https://docs.aws.eu/detective/latest/userguide/behavior-graph-data-about.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

botnet

Networks of bots that are infected by malware and are under the control of a single party,
known as a bot herder or bot operator. Botnets are the best-known mechanism to scale bots and
their impact.

branch

A contained area of a code repository. The first branch created in a repository is the main
branch. You can create a new branch from an existing branch, and you can then develop
features or fix bugs in the new branch. A branch you create to build a feature is commonly
referred to as a feature branch. When the feature is ready for release, you merge the feature
branch back into the main branch. For more information, see About branches (GitHub
documentation).

break-glass access

In exceptional circumstances and through an approved process, a quick means for a user to
gain access to an AWS account that they don't typically have permissions to access. For more
information, see the Implement break-glass procedures indicator in the AWS Well-Architected
guidance.

brownfield strategy

The existing infrastructure in your environment. When adopting a brownfield strategy for a
system architecture, you design the architecture around the constraints of the current systems
and infrastructure. If you are expanding the existing infrastructure, you might blend brownfield
and greenfield strategies.

buffer cache

The memory area where the most frequently accessed data is stored.

business capability

What a business does to generate value (for example, sales, customer service, or marketing).
Microservices architectures and development decisions can be driven by business capabilities.
For more information, see the Organized around business capabilities section of the Running
containerized microservices on AWS whitepaper.

business continuity planning (BCP)

A plan that addresses the potential impact of a disruptive event, such as a large-scale migration,
on operations and enables a business to resume operations quickly.

B 40

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-branches
https://docs.aws.eu/wellarchitected/latest/devops-guidance/ag.sad.5-implement-break-glass-procedures.html
https://docs.aws.eu//whitepapers/latest/running-containerized-microservices/organized-around-business-capabilities.html
https://docs.aws.eu//whitepapers/latest/running-containerized-microservices/welcome.html
https://docs.aws.eu//whitepapers/latest/running-containerized-microservices/welcome.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

C

CAF

See AWS Cloud Adoption Framework.

canary deployment

The slow and incremental release of a version to end users. When you are confident, you deploy
the new version and replace the current version in its entirety.

CCoE

See Cloud Center of Excellence.

CDC

See change data capture.

change data capture (CDC)

The process of tracking changes to a data source, such as a database table, and recording
metadata about the change. You can use CDC for various purposes, such as auditing or
replicating changes in a target system to maintain synchronization.

chaos engineering

Intentionally introducing failures or disruptive events to test a system’s resilience. You can use
AWS Fault Injection Service (AWS FIS) to perform experiments that stress your AWS workloads
and evaluate their response.

CI/CD

See continuous integration and continuous delivery.

classification

A categorization process that helps generate predictions. ML models for classification problems
predict a discrete value. Discrete values are always distinct from one another. For example, a
model might need to evaluate whether or not there is a car in an image.

client-side encryption

Encryption of data locally, before the target AWS service receives it.

C 41

https://docs.aws.eu/fis/latest/userguide/what-is.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

Cloud Center of Excellence (CCoE)

A multi-disciplinary team that drives cloud adoption efforts across an organization, including
developing cloud best practices, mobilizing resources, establishing migration timelines, and
leading the organization through large-scale transformations. For more information, see the
CCoE posts on the AWS Cloud Enterprise Strategy Blog.

cloud computing

The cloud technology that is typically used for remote data storage and IoT device
management. Cloud computing is commonly connected to edge computing technology.

cloud operating model

In an IT organization, the operating model that is used to build, mature, and optimize one or
more cloud environments. For more information, see Building your Cloud Operating Model.

cloud stages of adoption

The four phases that organizations typically go through when they migrate to the AWS Cloud:

• Project – Running a few cloud-related projects for proof of concept and learning purposes

• Foundation – Making foundational investments to scale your cloud adoption (e.g., creating a
landing zone, defining a CCoE, establishing an operations model)

• Migration – Migrating individual applications

• Re-invention – Optimizing products and services, and innovating in the cloud

These stages were defined by Stephen Orban in the blog post The Journey Toward Cloud-First
& the Stages of Adoption on the AWS Cloud Enterprise Strategy blog. For information about
how they relate to the AWS migration strategy, see the migration readiness guide.

CMDB

See configuration management database.

code repository

A location where source code and other assets, such as documentation, samples, and scripts,
are stored and updated through version control processes. Common cloud repositories include
GitHub or Bitbucket Cloud. Each version of the code is called a branch. In a microservice
structure, each repository is devoted to a single piece of functionality. A single CI/CD pipeline
can use multiple repositories.

C 42

https://aws.amazon.com/blogs/enterprise-strategy/tag/ccoe/
https://docs.aws.eu/prescriptive-guidance/latest/strategy-cloud-operating-model/introduction.html
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://docs.aws.eu/prescriptive-guidance/latest/migration-readiness/

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

cold cache

A buffer cache that is empty, not well populated, or contains stale or irrelevant data. This
affects performance because the database instance must read from the main memory or disk,
which is slower than reading from the buffer cache.

cold data

Data that is rarely accessed and is typically historical. When querying this kind of data, slow
queries are typically acceptable. Moving this data to lower-performing and less expensive
storage tiers or classes can reduce costs.

computer vision (CV)

A field of AI that uses machine learning to analyze and extract information from visual
formats such as digital images and videos. For example, Amazon SageMaker AI provides image
processing algorithms for CV.

configuration drift

For a workload, a configuration change from the expected state. It might cause the workload to
become noncompliant, and it's typically gradual and unintentional.

configuration management database (CMDB)

A repository that stores and manages information about a database and its IT environment,
including both hardware and software components and their configurations. You typically use
data from a CMDB in the portfolio discovery and analysis stage of migration.

conformance pack

A collection of AWS Config rules and remediation actions that you can assemble to customize
your compliance and security checks. You can deploy a conformance pack as a single entity in
an AWS account and Region, or across an organization, by using a YAML template. For more
information, see Conformance packs in the AWS Config documentation.

continuous integration and continuous delivery (CI/CD)

The process of automating the source, build, test, staging, and production stages of the
software release process. CI/CD is commonly described as a pipeline. CI/CD can help you
automate processes, improve productivity, improve code quality, and deliver faster. For more
information, see Benefits of continuous delivery. CD can also stand for continuous deployment.
For more information, see Continuous Delivery vs. Continuous Deployment.

C 43

https://docs.aws.eu/config/latest/developerguide/conformance-packs.html
https://docs.aws.eu/whitepapers/latest/practicing-continuous-integration-continuous-delivery/benefits-of-continuous-delivery.html
https://aws.amazon.com/devops/continuous-delivery/

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

CV

See computer vision.

D

data at rest

Data that is stationary in your network, such as data that is in storage.

data classification

A process for identifying and categorizing the data in your network based on its criticality and
sensitivity. It is a critical component of any cybersecurity risk management strategy because
it helps you determine the appropriate protection and retention controls for the data. Data
classification is a component of the security pillar in the AWS Well-Architected Framework. For
more information, see Data classification.

data drift

A meaningful variation between the production data and the data that was used to train an ML
model, or a meaningful change in the input data over time. Data drift can reduce the overall
quality, accuracy, and fairness in ML model predictions.

data in transit

Data that is actively moving through your network, such as between network resources.

data mesh

An architectural framework that provides distributed, decentralized data ownership with
centralized management and governance.

data minimization

The principle of collecting and processing only the data that is strictly necessary. Practicing
data minimization in the AWS Cloud can reduce privacy risks, costs, and your analytics carbon
footprint.

data perimeter

A set of preventive guardrails in your AWS environment that help make sure that only trusted
identities are accessing trusted resources from expected networks. For more information, see
Building a data perimeter on AWS.

D 44

https://docs.aws.eu/wellarchitected/latest/security-pillar/data-classification.html
https://docs.aws.eu/whitepapers/latest/building-a-data-perimeter-on-aws/building-a-data-perimeter-on-aws.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

data preprocessing

To transform raw data into a format that is easily parsed by your ML model. Preprocessing data
can mean removing certain columns or rows and addressing missing, inconsistent, or duplicate
values.

data provenance

The process of tracking the origin and history of data throughout its lifecycle, such as how the
data was generated, transmitted, and stored.

data subject

An individual whose data is being collected and processed.

data warehouse

A data management system that supports business intelligence, such as analytics. Data
warehouses commonly contain large amounts of historical data, and they are typically used for
queries and analysis.

database definition language (DDL)

Statements or commands for creating or modifying the structure of tables and objects in a
database.

database manipulation language (DML)

Statements or commands for modifying (inserting, updating, and deleting) information in a
database.

DDL

See database definition language.

deep ensemble

To combine multiple deep learning models for prediction. You can use deep ensembles to
obtain a more accurate prediction or for estimating uncertainty in predictions.

deep learning

An ML subfield that uses multiple layers of artificial neural networks to identify mapping
between input data and target variables of interest.

D 45

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

defense-in-depth

An information security approach in which a series of security mechanisms and controls are
thoughtfully layered throughout a computer network to protect the confidentiality, integrity,
and availability of the network and the data within. When you adopt this strategy on AWS,
you add multiple controls at different layers of the AWS Organizations structure to help
secure resources. For example, a defense-in-depth approach might combine multi-factor
authentication, network segmentation, and encryption.

delegated administrator

In AWS Organizations, a compatible service can register an AWS member account to administer
the organization’s accounts and manage permissions for that service. This account is called the
delegated administrator for that service. For more information and a list of compatible services,
see Services that work with AWS Organizations in the AWS Organizations documentation.

deployment

The process of making an application, new features, or code fixes available in the target
environment. Deployment involves implementing changes in a code base and then building and
running that code base in the application’s environments.

development environment

See environment.

detective control

A security control that is designed to detect, log, and alert after an event has occurred.
These controls are a second line of defense, alerting you to security events that bypassed the
preventative controls in place. For more information, see Detective controls in Implementing
security controls on AWS.

development value stream mapping (DVSM)

A process used to identify and prioritize constraints that adversely affect speed and quality in
a software development lifecycle. DVSM extends the value stream mapping process originally
designed for lean manufacturing practices. It focuses on the steps and teams required to create
and move value through the software development process.

D 46

https://docs.aws.eu/organizations/latest/userguide/orgs_integrate_services_list.html
https://docs.aws.eu/prescriptive-guidance/latest/aws-security-controls/detective-controls.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

digital twin

A virtual representation of a real-world system, such as a building, factory, industrial
equipment, or production line. Digital twins support predictive maintenance, remote
monitoring, and production optimization.

dimension table

In a star schema, a smaller table that contains data attributes about quantitative data in a
fact table. Dimension table attributes are typically text fields or discrete numbers that behave
like text. These attributes are commonly used for query constraining, filtering, and result set
labeling.

disaster

An event that prevents a workload or system from fulfilling its business objectives in its primary
deployed location. These events can be natural disasters, technical failures, or the result of
human actions, such as unintentional misconfiguration or a malware attack.

disaster recovery (DR)

The strategy and process you use to minimize downtime and data loss caused by a disaster. For
more information, see Disaster Recovery of Workloads on AWS: Recovery in the Cloud in the
AWS Well-Architected Framework.

DML

See database manipulation language.

domain-driven design

An approach to developing a complex software system by connecting its components to
evolving domains, or core business goals, that each component serves. This concept was
introduced by Eric Evans in his book, Domain-Driven Design: Tackling Complexity in the Heart of
Software (Boston: Addison-Wesley Professional, 2003). For information about how you can use
domain-driven design with the strangler fig pattern, see Modernizing legacy Microsoft ASP.NET
(ASMX) web services incrementally by using containers and Amazon API Gateway.

DR

See disaster recovery.

D 47

https://docs.aws.eu/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-workloads-on-aws.html
https://docs.aws.eu/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html
https://docs.aws.eu/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

drift detection

Tracking deviations from a baselined configuration. For example, you can use AWS
CloudFormation to detect drift in system resources, or you can use AWS Control Tower to detect
changes in your landing zone that might affect compliance with governance requirements.

DVSM

See development value stream mapping.

E

EDA

See exploratory data analysis.

EDI

See electronic data interchange.

edge computing

The technology that increases the computing power for smart devices at the edges of an IoT
network. When compared with cloud computing, edge computing can reduce communication
latency and improve response time.

electronic data interchange (EDI)

The automated exchange of business documents between organizations. For more information,
see What is Electronic Data Interchange.

encryption

A computing process that transforms plaintext data, which is human-readable, into ciphertext.

encryption key

A cryptographic string of randomized bits that is generated by an encryption algorithm. Keys
can vary in length, and each key is designed to be unpredictable and unique.

endianness

The order in which bytes are stored in computer memory. Big-endian systems store the most
significant byte first. Little-endian systems store the least significant byte first.

E 48

https://docs.aws.eu/AWSCloudFormation/latest/UserGuide/using-cfn-stack-drift.html
https://docs.aws.eu/controltower/latest/userguide/drift.html
https://docs.aws.eu/controltower/latest/userguide/drift.html
https://aws.amazon.com/what-is/electronic-data-interchange/

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

endpoint

See service endpoint.

endpoint service

A service that you can host in a virtual private cloud (VPC) to share with other users. You can
create an endpoint service with AWS PrivateLink and grant permissions to other AWS accounts
or to AWS Identity and Access Management (IAM) principals. These accounts or principals
can connect to your endpoint service privately by creating interface VPC endpoints. For more
information, see Create an endpoint service in the Amazon Virtual Private Cloud (Amazon VPC)
documentation.

enterprise resource planning (ERP)

A system that automates and manages key business processes (such as accounting, MES, and
project management) for an enterprise.

envelope encryption

The process of encrypting an encryption key with another encryption key. For more
information, see Envelope encryption in the AWS Key Management Service (AWS KMS)
documentation.

environment

An instance of a running application. The following are common types of environments in cloud
computing:

• development environment – An instance of a running application that is available only to the
core team responsible for maintaining the application. Development environments are used
to test changes before promoting them to upper environments. This type of environment is
sometimes referred to as a test environment.

• lower environments – All development environments for an application, such as those used
for initial builds and tests.

• production environment – An instance of a running application that end users can access. In a
CI/CD pipeline, the production environment is the last deployment environment.

• upper environments – All environments that can be accessed by users other than the core
development team. This can include a production environment, preproduction environments,
and environments for user acceptance testing.

E 49

https://docs.aws.eu/vpc/latest/privatelink/create-endpoint-service.html
https://docs.aws.eu/kms/latest/developerguide/concepts.html#enveloping

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

epic

In agile methodologies, functional categories that help organize and prioritize your work. Epics
provide a high-level description of requirements and implementation tasks. For example, AWS
CAF security epics include identity and access management, detective controls, infrastructure
security, data protection, and incident response. For more information about epics in the AWS
migration strategy, see the program implementation guide.

ERP

See enterprise resource planning.

exploratory data analysis (EDA)

The process of analyzing a dataset to understand its main characteristics. You collect or
aggregate data and then perform initial investigations to find patterns, detect anomalies,
and check assumptions. EDA is performed by calculating summary statistics and creating data
visualizations.

F

fact table

The central table in a star schema. It stores quantitative data about business operations.
Typically, a fact table contains two types of columns: those that contain measures and those
that contain a foreign key to a dimension table.

fail fast

A philosophy that uses frequent and incremental testing to reduce the development lifecycle. It
is a critical part of an agile approach.

fault isolation boundary

In the AWS Cloud, a boundary such as an Availability Zone, AWS Region, control plane, or data
plane that limits the effect of a failure and helps improve the resilience of workloads. For more
information, see AWS Fault Isolation Boundaries.

feature branch

See branch.

F 50

https://docs.aws.eu/prescriptive-guidance/latest/migration-program-implementation/
https://docs.aws.eu/whitepapers/latest/aws-fault-isolation-boundaries/abstract-and-introduction.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

features

The input data that you use to make a prediction. For example, in a manufacturing context,
features could be images that are periodically captured from the manufacturing line.

feature importance

How significant a feature is for a model’s predictions. This is usually expressed as a numerical
score that can be calculated through various techniques, such as Shapley Additive Explanations
(SHAP) and integrated gradients. For more information, see Machine learning model
interpretability with AWS.

feature transformation

To optimize data for the ML process, including enriching data with additional sources, scaling
values, or extracting multiple sets of information from a single data field. This enables the ML
model to benefit from the data. For example, if you break down the “2021-05-27 00:15:37”
date into “2021”, “May”, “Thu”, and “15”, you can help the learning algorithm learn nuanced
patterns associated with different data components.

few-shot prompting

Providing an LLM with a small number of examples that demonstrate the task and desired
output before asking it to perform a similar task. This technique is an application of in-context
learning, where models learn from examples (shots) that are embedded in prompts. Few-shot
prompting can be effective for tasks that require specific formatting, reasoning, or domain
knowledge. See also zero-shot prompting.

FGAC

See fine-grained access control.

fine-grained access control (FGAC)

The use of multiple conditions to allow or deny an access request.

flash-cut migration

A database migration method that uses continuous data replication through change data
capture to migrate data in the shortest time possible, instead of using a phased approach. The
objective is to keep downtime to a minimum.

FM

See foundation model.

F 51

https://docs.aws.eu/prescriptive-guidance/latest/ml-model-interpretability/overview.html
https://docs.aws.eu/prescriptive-guidance/latest/ml-model-interpretability/overview.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

foundation model (FM)

A large deep-learning neural network that has been training on massive datasets of generalized
and unlabeled data. FMs are capable of performing a wide variety of general tasks, such as
understanding language, generating text and images, and conversing in natural language. For
more information, see What are Foundation Models.

G

generative AI

A subset of AI models that have been trained on large amounts of data and that can use a
simple text prompt to create new content and artifacts, such as images, videos, text, and audio.
For more information, see What is Generative AI.

geo blocking

See geographic restrictions.

geographic restrictions (geo blocking)

In Amazon CloudFront, an option to prevent users in specific countries from accessing content
distributions. You can use an allow list or block list to specify approved and banned countries.
For more information, see Restricting the geographic distribution of your content in the
CloudFront documentation.

Gitflow workflow

An approach in which lower and upper environments use different branches in a source code
repository. The Gitflow workflow is considered legacy, and the trunk-based workflow is the
modern, preferred approach.

golden image

A snapshot of a system or software that is used as a template to deploy new instances of that
system or software. For example, in manufacturing, a golden image can be used to provision
software on multiple devices and helps improve speed, scalability, and productivity in device
manufacturing operations.

greenfield strategy

The absence of existing infrastructure in a new environment. When adopting a greenfield
strategy for a system architecture, you can select all new technologies without the restriction

G 52

https://aws.amazon.com/what-is/foundation-models/
https://aws.amazon.com/what-is/generative-ai/
https://docs.aws.eu/AmazonCloudFront/latest/DeveloperGuide/georestrictions.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

of compatibility with existing infrastructure, also known as brownfield. If you are expanding the
existing infrastructure, you might blend brownfield and greenfield strategies.

guardrail

A high-level rule that helps govern resources, policies, and compliance across organizational
units (OUs). Preventive guardrails enforce policies to ensure alignment to compliance standards.
They are implemented by using service control policies and IAM permissions boundaries.
Detective guardrails detect policy violations and compliance issues, and generate alerts for
remediation. They are implemented by using AWS Config, AWS Security Hub CSPM, Amazon
GuardDuty, AWS Trusted Advisor, Amazon Inspector, and custom AWS Lambda checks.

H

HA

See high availability.

heterogeneous database migration

Migrating your source database to a target database that uses a different database engine
(for example, Oracle to Amazon Aurora). Heterogeneous migration is typically part of a re-
architecting effort, and converting the schema can be a complex task. AWS provides AWS SCT
that helps with schema conversions.

high availability (HA)

The ability of a workload to operate continuously, without intervention, in the event of
challenges or disasters. HA systems are designed to automatically fail over, consistently deliver
high-quality performance, and handle different loads and failures with minimal performance
impact.

historian modernization

An approach used to modernize and upgrade operational technology (OT) systems to better
serve the needs of the manufacturing industry. A historian is a type of database that is used to
collect and store data from various sources in a factory.

H 53

https://docs.aws.eu/SchemaConversionTool/latest/userguide/CHAP_Welcome.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

holdout data

A portion of historical, labeled data that is withheld from a dataset that is used to train a
machine learning model. You can use holdout data to evaluate the model performance by
comparing the model predictions against the holdout data.

homogeneous database migration

Migrating your source database to a target database that shares the same database engine
(for example, Microsoft SQL Server to Amazon RDS for SQL Server). Homogeneous migration
is typically part of a rehosting or replatforming effort. You can use native database utilities to
migrate the schema.

hot data

Data that is frequently accessed, such as real-time data or recent translational data. This data
typically requires a high-performance storage tier or class to provide fast query responses.

hotfix

An urgent fix for a critical issue in a production environment. Due to its urgency, a hotfix is
usually made outside of the typical DevOps release workflow.

hypercare period

Immediately following cutover, the period of time when a migration team manages and
monitors the migrated applications in the cloud in order to address any issues. Typically, this
period is 1–4 days in length. At the end of the hypercare period, the migration team typically
transfers responsibility for the applications to the cloud operations team.

I

IaC

See infrastructure as code.

identity-based policy

A policy attached to one or more IAM principals that defines their permissions within the AWS
Cloud environment.

I 54

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

idle application

An application that has an average CPU and memory usage between 5 and 20 percent over
a period of 90 days. In a migration project, it is common to retire these applications or retain
them on premises.

IIoT

See industrial Internet of Things.

immutable infrastructure

A model that deploys new infrastructure for production workloads instead of updating,
patching, or modifying the existing infrastructure. Immutable infrastructures are inherently
more consistent, reliable, and predictable than mutable infrastructure. For more information,
see the Deploy using immutable infrastructure best practice in the AWS Well-Architected
Framework.

inbound (ingress) VPC

In an AWS multi-account architecture, a VPC that accepts, inspects, and routes network
connections from outside an application. The AWS Security Reference Architecture recommends
setting up your Network account with inbound, outbound, and inspection VPCs to protect the
two-way interface between your application and the broader internet.

incremental migration

A cutover strategy in which you migrate your application in small parts instead of performing
a single, full cutover. For example, you might move only a few microservices or users to the
new system initially. After you verify that everything is working properly, you can incrementally
move additional microservices or users until you can decommission your legacy system. This
strategy reduces the risks associated with large migrations.

Industry 4.0

A term that was introduced by Klaus Schwab in 2016 to refer to the modernization of
manufacturing processes through advances in connectivity, real-time data, automation,
analytics, and AI/ML.

infrastructure

All of the resources and assets contained within an application’s environment.

I 55

https://docs.aws.eu/wellarchitected/latest/reliability-pillar/rel_tracking_change_management_immutable_infrastructure.html
https://docs.aws.eu/prescriptive-guidance/latest/security-reference-architecture/network.html
https://www.weforum.org/about/klaus-schwab/

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

infrastructure as code (IaC)

The process of provisioning and managing an application’s infrastructure through a set
of configuration files. IaC is designed to help you centralize infrastructure management,
standardize resources, and scale quickly so that new environments are repeatable, reliable, and
consistent.

industrial Internet of Things (IIoT)

The use of internet-connected sensors and devices in the industrial sectors, such as
manufacturing, energy, automotive, healthcare, life sciences, and agriculture. For more
information, see Building an industrial Internet of Things (IIoT) digital transformation strategy.

inspection VPC

In an AWS multi-account architecture, a centralized VPC that manages inspections of network
traffic between VPCs (in the same or different AWS Regions), the internet, and on-premises
networks. The AWS Security Reference Architecture recommends setting up your Network
account with inbound, outbound, and inspection VPCs to protect the two-way interface
between your application and the broader internet.

Internet of Things (IoT)

The network of connected physical objects with embedded sensors or processors that
communicate with other devices and systems through the internet or over a local
communication network. For more information, see What is IoT?

interpretability

A characteristic of a machine learning model that describes the degree to which a human
can understand how the model’s predictions depend on its inputs. For more information, see
Machine learning model interpretability with AWS.

IoT

See Internet of Things.

IT information library (ITIL)

A set of best practices for delivering IT services and aligning these services with business
requirements. ITIL provides the foundation for ITSM.

I 56

https://docs.aws.eu/prescriptive-guidance/latest/strategy-iiot-transformation/welcome.html
https://docs.aws.eu/prescriptive-guidance/latest/security-reference-architecture/network.html
https://aws.amazon.com/what-is/iot/
https://docs.aws.eu/prescriptive-guidance/latest/ml-model-interpretability/

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

IT service management (ITSM)

Activities associated with designing, implementing, managing, and supporting IT services for
an organization. For information about integrating cloud operations with ITSM tools, see the
operations integration guide.

ITIL

See IT information library.

ITSM

See IT service management.

L

label-based access control (LBAC)

An implementation of mandatory access control (MAC) where the users and the data itself are
each explicitly assigned a security label value. The intersection between the user security label
and data security label determines which rows and columns can be seen by the user.

landing zone

A landing zone is a well-architected, multi-account AWS environment that is scalable and
secure. This is a starting point from which your organizations can quickly launch and deploy
workloads and applications with confidence in their security and infrastructure environment.
For more information about landing zones, see Setting up a secure and scalable multi-account
AWS environment.

large language model (LLM)

A deep learning AI model that is pretrained on a vast amount of data. An LLM can perform
multiple tasks, such as answering questions, summarizing documents, translating text into
other languages, and completing sentences. For more information, see What are LLMs.

large migration

A migration of 300 or more servers.

LBAC

See label-based access control.

L 57

https://docs.aws.eu/prescriptive-guidance/latest/migration-operations-integration/tools-integration.html
https://docs.aws.eu/prescriptive-guidance/latest/migration-aws-environment/welcome.html
https://docs.aws.eu/prescriptive-guidance/latest/migration-aws-environment/welcome.html
https://aws.amazon.com/what-is/large-language-model/

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

least privilege

The security best practice of granting the minimum permissions required to perform a task. For
more information, see Apply least-privilege permissions in the IAM documentation.

lift and shift

See 7 Rs.

little-endian system

A system that stores the least significant byte first. See also endianness.

LLM

See large language model.

lower environments

See environment.

M

machine learning (ML)

A type of artificial intelligence that uses algorithms and techniques for pattern recognition and
learning. ML analyzes and learns from recorded data, such as Internet of Things (IoT) data, to
generate a statistical model based on patterns. For more information, see Machine Learning.

main branch

See branch.

malware

Software that is designed to compromise computer security or privacy. Malware might disrupt
computer systems, leak sensitive information, or gain unauthorized access. Examples of
malware include viruses, worms, ransomware, Trojan horses, spyware, and keyloggers.

managed services

AWS services for which AWS operates the infrastructure layer, the operating system, and
platforms, and you access the endpoints to store and retrieve data. Amazon Simple Storage
Service (Amazon S3) and Amazon DynamoDB are examples of managed services. These are also
known as abstracted services.

M 58

https://docs.aws.eu/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://aws.amazon.com/what-is/machine-learning/

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

manufacturing execution system (MES)

A software system for tracking, monitoring, documenting, and controlling production processes
that convert raw materials to finished products on the shop floor.

MAP

See Migration Acceleration Program.

mechanism

A complete process in which you create a tool, drive adoption of the tool, and then inspect the
results in order to make adjustments. A mechanism is a cycle that reinforces and improves itself
as it operates. For more information, see Building mechanisms in the AWS Well-Architected
Framework.

member account

All AWS accounts other than the management account that are part of an organization in AWS
Organizations. An account can be a member of only one organization at a time.

MES

See manufacturing execution system.

Message Queuing Telemetry Transport (MQTT)

A lightweight, machine-to-machine (M2M) communication protocol, based on the publish/
subscribe pattern, for resource-constrained IoT devices.

microservice

A small, independent service that communicates over well-defined APIs and is typically
owned by small, self-contained teams. For example, an insurance system might include
microservices that map to business capabilities, such as sales or marketing, or subdomains,
such as purchasing, claims, or analytics. The benefits of microservices include agility, flexible
scaling, easy deployment, reusable code, and resilience. For more information, see Integrating
microservices by using AWS serverless services.

microservices architecture

An approach to building an application with independent components that run each application
process as a microservice. These microservices communicate through a well-defined interface
by using lightweight APIs. Each microservice in this architecture can be updated, deployed,

M 59

https://docs.aws.eu/wellarchitected/latest/operational-readiness-reviews/building-mechanisms.html
https://docs.aws.eu/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://docs.aws.eu/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

and scaled to meet demand for specific functions of an application. For more information, see
Implementing microservices on AWS.

Migration Acceleration Program (MAP)

An AWS program that provides consulting support, training, and services to help organizations
build a strong operational foundation for moving to the cloud, and to help offset the initial
cost of migrations. MAP includes a migration methodology for executing legacy migrations in a
methodical way and a set of tools to automate and accelerate common migration scenarios.

migration at scale

The process of moving the majority of the application portfolio to the cloud in waves, with
more applications moved at a faster rate in each wave. This phase uses the best practices and
lessons learned from the earlier phases to implement a migration factory of teams, tools, and
processes to streamline the migration of workloads through automation and agile delivery. This
is the third phase of the AWS migration strategy.

migration factory

Cross-functional teams that streamline the migration of workloads through automated, agile
approaches. Migration factory teams typically include operations, business analysts and owners,
migration engineers, developers, and DevOps professionals working in sprints. Between 20
and 50 percent of an enterprise application portfolio consists of repeated patterns that can
be optimized by a factory approach. For more information, see the discussion of migration
factories and the Cloud Migration Factory guide in this content set.

migration metadata

The information about the application and server that is needed to complete the migration.
Each migration pattern requires a different set of migration metadata. Examples of migration
metadata include the target subnet, security group, and AWS account.

migration pattern

A repeatable migration task that details the migration strategy, the migration destination, and
the migration application or service used. Example: Rehost migration to Amazon EC2 with AWS
Application Migration Service.

Migration Portfolio Assessment (MPA)

An online tool that provides information for validating the business case for migrating to
the AWS Cloud. MPA provides detailed portfolio assessment (server right-sizing, pricing, TCO

M 60

https://docs.aws.eu//whitepapers/latest/microservices-on-aws/microservices-on-aws.html
https://docs.aws.eu/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.eu/prescriptive-guidance/latest/strategy-migration/migrations-phase.html
https://docs.aws.eu/prescriptive-guidance/latest/strategy-migration/migrations-phase.html
https://docs.aws.eu/prescriptive-guidance/latest/migration-factory-cloudendure/welcome.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

comparisons, migration cost analysis) as well as migration planning (application data analysis
and data collection, application grouping, migration prioritization, and wave planning). The
MPA tool (requires login) is available free of charge to all AWS consultants and APN Partner
consultants.

Migration Readiness Assessment (MRA)

The process of gaining insights about an organization’s cloud readiness status, identifying
strengths and weaknesses, and building an action plan to close identified gaps, using the AWS
CAF. For more information, see the migration readiness guide. MRA is the first phase of the AWS
migration strategy.

migration strategy

The approach used to migrate a workload to the AWS Cloud. For more information, see the 7 Rs
entry in this glossary and see Mobilize your organization to accelerate large-scale migrations.

ML

See machine learning.

modernization

Transforming an outdated (legacy or monolithic) application and its infrastructure into an agile,
elastic, and highly available system in the cloud to reduce costs, gain efficiencies, and take
advantage of innovations. For more information, see Strategy for modernizing applications in
the AWS Cloud.

modernization readiness assessment

An evaluation that helps determine the modernization readiness of an organization’s
applications; identifies benefits, risks, and dependencies; and determines how well the
organization can support the future state of those applications. The outcome of the assessment
is a blueprint of the target architecture, a roadmap that details development phases and
milestones for the modernization process, and an action plan for addressing identified gaps. For
more information, see Evaluating modernization readiness for applications in the AWS Cloud.

monolithic applications (monoliths)

Applications that run as a single service with tightly coupled processes. Monolithic applications
have several drawbacks. If one application feature experiences a spike in demand, the
entire architecture must be scaled. Adding or improving a monolithic application’s features
also becomes more complex when the code base grows. To address these issues, you can

M 61

https://mpa.accelerate.amazonaws.com/
https://docs.aws.eu/prescriptive-guidance/latest/migration-readiness/welcome.html
https://docs.aws.eu/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.eu/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.eu/prescriptive-guidance/latest/strategy-migration/welcome.html
https://docs.aws.eu/prescriptive-guidance/latest/strategy-modernizing-applications/
https://docs.aws.eu/prescriptive-guidance/latest/strategy-modernizing-applications/
https://docs.aws.eu/prescriptive-guidance/latest/modernization-assessing-applications/

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

use a microservices architecture. For more information, see Decomposing monoliths into
microservices.

MPA

See Migration Portfolio Assessment.

MQTT

See Message Queuing Telemetry Transport.

multiclass classification

A process that helps generate predictions for multiple classes (predicting one of more than
two outcomes). For example, an ML model might ask "Is this product a book, car, or phone?" or
"Which product category is most interesting to this customer?"

mutable infrastructure

A model that updates and modifies the existing infrastructure for production workloads. For
improved consistency, reliability, and predictability, the AWS Well-Architected Framework
recommends the use of immutable infrastructure as a best practice.

O

OAC

See origin access control.

OAI

See origin access identity.

OCM

See organizational change management.

offline migration

A migration method in which the source workload is taken down during the migration process.
This method involves extended downtime and is typically used for small, non-critical workloads.

OI

See operations integration.

O 62

https://docs.aws.eu/prescriptive-guidance/latest/modernization-decomposing-monoliths/welcome.html
https://docs.aws.eu/prescriptive-guidance/latest/modernization-decomposing-monoliths/welcome.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

OLA

See operational-level agreement.

online migration

A migration method in which the source workload is copied to the target system without being
taken offline. Applications that are connected to the workload can continue to function during
the migration. This method involves zero to minimal downtime and is typically used for critical
production workloads.

OPC-UA

See Open Process Communications - Unified Architecture.

Open Process Communications - Unified Architecture (OPC-UA)

A machine-to-machine (M2M) communication protocol for industrial automation. OPC-UA
provides an interoperability standard with data encryption, authentication, and authorization
schemes.

operational-level agreement (OLA)

An agreement that clarifies what functional IT groups promise to deliver to each other, to
support a service-level agreement (SLA).

operational readiness review (ORR)

A checklist of questions and associated best practices that help you understand, evaluate,
prevent, or reduce the scope of incidents and possible failures. For more information, see
Operational Readiness Reviews (ORR) in the AWS Well-Architected Framework.

operational technology (OT)

Hardware and software systems that work with the physical environment to control industrial
operations, equipment, and infrastructure. In manufacturing, the integration of OT and
information technology (IT) systems is a key focus for Industry 4.0 transformations.

operations integration (OI)

The process of modernizing operations in the cloud, which involves readiness planning,
automation, and integration. For more information, see the operations integration guide.

organization trail

A trail that’s created by AWS CloudTrail that logs all events for all AWS accounts in an
organization in AWS Organizations. This trail is created in each AWS account that’s part of the

O 63

https://docs.aws.eu/wellarchitected/latest/operational-readiness-reviews/wa-operational-readiness-reviews.html
https://docs.aws.eu/prescriptive-guidance/latest/migration-operations-integration/

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

organization and tracks the activity in each account. For more information, see Creating a trail
for an organization in the CloudTrail documentation.

organizational change management (OCM)

A framework for managing major, disruptive business transformations from a people, culture,
and leadership perspective. OCM helps organizations prepare for, and transition to, new
systems and strategies by accelerating change adoption, addressing transitional issues, and
driving cultural and organizational changes. In the AWS migration strategy, this framework is
called people acceleration, because of the speed of change required in cloud adoption projects.
For more information, see the OCM guide.

origin access control (OAC)

In CloudFront, an enhanced option for restricting access to secure your Amazon Simple Storage
Service (Amazon S3) content. OAC supports all S3 buckets in all AWS Regions, server-side
encryption with AWS KMS (SSE-KMS), and dynamic PUT and DELETE requests to the S3 bucket.

origin access identity (OAI)

In CloudFront, an option for restricting access to secure your Amazon S3 content. When you
use OAI, CloudFront creates a principal that Amazon S3 can authenticate with. Authenticated
principals can access content in an S3 bucket only through a specific CloudFront distribution.
See also OAC, which provides more granular and enhanced access control.

ORR

See operational readiness review.

OT

See operational technology.

outbound (egress) VPC

In an AWS multi-account architecture, a VPC that handles network connections that are
initiated from within an application. The AWS Security Reference Architecture recommends
setting up your Network account with inbound, outbound, and inspection VPCs to protect the
two-way interface between your application and the broader internet.

O 64

https://docs.aws.eu/awscloudtrail/latest/userguide/creating-trail-organization.html
https://docs.aws.eu/awscloudtrail/latest/userguide/creating-trail-organization.html
https://docs.aws.eu/prescriptive-guidance/latest/migration-ocm/
https://docs.aws.eu/prescriptive-guidance/latest/security-reference-architecture/network.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

P

permissions boundary

An IAM management policy that is attached to IAM principals to set the maximum permissions
that the user or role can have. For more information, see Permissions boundaries in the IAM
documentation.

personally identifiable information (PII)

Information that, when viewed directly or paired with other related data, can be used to
reasonably infer the identity of an individual. Examples of PII include names, addresses, and
contact information.

PII

See personally identifiable information.

playbook

A set of predefined steps that capture the work associated with migrations, such as delivering
core operations functions in the cloud. A playbook can take the form of scripts, automated
runbooks, or a summary of processes or steps required to operate your modernized
environment.

PLC

See programmable logic controller.

PLM

See product lifecycle management.

policy

An object that can define permissions (see identity-based policy), specify access conditions (see
resource-based policy), or define the maximum permissions for all accounts in an organization
in AWS Organizations (see service control policy).

polyglot persistence

Independently choosing a microservice’s data storage technology based on data access patterns
and other requirements. If your microservices have the same data storage technology, they can
encounter implementation challenges or experience poor performance. Microservices are more
easily implemented and achieve better performance and scalability if they use the data store

P 65

https://docs.aws.eu/IAM/latest/UserGuide/access_policies_boundaries.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

best adapted to their requirements. For more information, see Enabling data persistence in
microservices.

portfolio assessment

A process of discovering, analyzing, and prioritizing the application portfolio in order to plan
the migration. For more information, see Evaluating migration readiness.

predicate

A query condition that returns true or false, commonly located in a WHERE clause.

predicate pushdown

A database query optimization technique that filters the data in the query before transfer. This
reduces the amount of data that must be retrieved and processed from the relational database,
and it improves query performance.

preventative control

A security control that is designed to prevent an event from occurring. These controls are a first
line of defense to help prevent unauthorized access or unwanted changes to your network. For
more information, see Preventative controls in Implementing security controls on AWS.

principal

An entity in AWS that can perform actions and access resources. This entity is typically a root
user for an AWS account, an IAM role, or a user. For more information, see Principal in Roles
terms and concepts in the IAM documentation.

privacy by design

A system engineering approach that takes privacy into account through the whole development
process.

private hosted zones

A container that holds information about how you want Amazon Route 53 to respond to DNS
queries for a domain and its subdomains within one or more VPCs. For more information, see
Working with private hosted zones in the Route 53 documentation.

proactive control

A security control designed to prevent the deployment of noncompliant resources. These
controls scan resources before they are provisioned. If the resource is not compliant with the
control, then it isn't provisioned. For more information, see the Controls reference guide in the

P 66

https://docs.aws.eu/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.eu/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.eu/prescriptive-guidance/latest/migration-readiness/welcome.html
https://docs.aws.eu/prescriptive-guidance/latest/aws-security-controls/preventative-controls.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts
https://docs.aws.eu/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts
https://docs.aws.eu/Route53/latest/DeveloperGuide/hosted-zones-private.html
https://docs.aws.eu/controltower/latest/controlreference/controls.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

AWS Control Tower documentation and see Proactive controls in Implementing security controls
on AWS.

product lifecycle management (PLM)

The management of data and processes for a product throughout its entire lifecycle, from
design, development, and launch, through growth and maturity, to decline and removal.

production environment

See environment.

programmable logic controller (PLC)

In manufacturing, a highly reliable, adaptable computer that monitors machines and automates
manufacturing processes.

prompt chaining

Using the output of one LLM prompt as the input for the next prompt to generate better
responses. This technique is used to break down a complex task into subtasks, or to iteratively
refine or expand a preliminary response. It helps improve the accuracy and relevance of a
model’s responses and allows for more granular, personalized results.

pseudonymization

The process of replacing personal identifiers in a dataset with placeholder values.
Pseudonymization can help protect personal privacy. Pseudonymized data is still considered to
be personal data.

publish/subscribe (pub/sub)

A pattern that enables asynchronous communications among microservices to improve
scalability and responsiveness. For example, in a microservices-based MES, a microservice can
publish event messages to a channel that other microservices can subscribe to. The system can
add new microservices without changing the publishing service.

Q

query plan

A series of steps, like instructions, that are used to access the data in a SQL relational database
system.

Q 67

https://docs.aws.eu/prescriptive-guidance/latest/aws-security-controls/proactive-controls.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

query plan regression

When a database service optimizer chooses a less optimal plan than it did before a given
change to the database environment. This can be caused by changes to statistics, constraints,
environment settings, query parameter bindings, and updates to the database engine.

R

RACI matrix

See responsible, accountable, consulted, informed (RACI).

RAG

See Retrieval Augmented Generation.

ransomware

A malicious software that is designed to block access to a computer system or data until a
payment is made.

RASCI matrix

See responsible, accountable, consulted, informed (RACI).

RCAC

See row and column access control.

read replica

A copy of a database that’s used for read-only purposes. You can route queries to the read
replica to reduce the load on your primary database.

re-architect

See 7 Rs.

recovery point objective (RPO)

The maximum acceptable amount of time since the last data recovery point. This determines
what is considered an acceptable loss of data between the last recovery point and the
interruption of service.

R 68

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

recovery time objective (RTO)

The maximum acceptable delay between the interruption of service and restoration of service.

refactor

See 7 Rs.

Region

A collection of AWS resources in a geographic area. Each AWS Region is isolated and
independent of the others to provide fault tolerance, stability, and resilience. For more
information, see Specify which AWS Regions your account can use.

regression

An ML technique that predicts a numeric value. For example, to solve the problem of "What
price will this house sell for?" an ML model could use a linear regression model to predict a
house's sale price based on known facts about the house (for example, the square footage).

rehost

See 7 Rs.

release

In a deployment process, the act of promoting changes to a production environment.

relocate

See 7 Rs.

replatform

See 7 Rs.

repurchase

See 7 Rs.

resiliency

An application's ability to resist or recover from disruptions. High availability and disaster
recovery are common considerations when planning for resiliency in the AWS Cloud. For more
information, see AWS Cloud Resilience.

R 69

https://docs.aws.eu/accounts/latest/reference/manage-acct-regions.html
https://aws.amazon.com/resilience/

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

resource-based policy

A policy attached to a resource, such as an Amazon S3 bucket, an endpoint, or an encryption
key. This type of policy specifies which principals are allowed access, supported actions, and any
other conditions that must be met.

responsible, accountable, consulted, informed (RACI) matrix

A matrix that defines the roles and responsibilities for all parties involved in migration activities
and cloud operations. The matrix name is derived from the responsibility types defined in the
matrix: responsible (R), accountable (A), consulted (C), and informed (I). The support (S) type
is optional. If you include support, the matrix is called a RASCI matrix, and if you exclude it, it’s
called a RACI matrix.

responsive control

A security control that is designed to drive remediation of adverse events or deviations from
your security baseline. For more information, see Responsive controls in Implementing security
controls on AWS.

retain

See 7 Rs.

retire

See 7 Rs.

Retrieval Augmented Generation (RAG)

A generative AI technology in which an LLM references an authoritative data source that is
outside of its training data sources before generating a response. For example, a RAG model
might perform a semantic search of an organization's knowledge base or custom data. For more
information, see What is RAG.

rotation

The process of periodically updating a secret to make it more difficult for an attacker to access
the credentials.

row and column access control (RCAC)

The use of basic, flexible SQL expressions that have defined access rules. RCAC consists of row
permissions and column masks.

R 70

https://docs.aws.eu/prescriptive-guidance/latest/aws-security-controls/responsive-controls.html
https://aws.amazon.com/what-is/retrieval-augmented-generation/

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

RPO

See recovery point objective.

RTO

See recovery time objective.

runbook

A set of manual or automated procedures required to perform a specific task. These are
typically built to streamline repetitive operations or procedures with high error rates.

S

SAML 2.0

An open standard that many identity providers (IdPs) use. This feature enables federated
single sign-on (SSO), so users can log into the AWS Management Console or call the AWS API
operations without you having to create user in IAM for everyone in your organization. For more
information about SAML 2.0-based federation, see About SAML 2.0-based federation in the IAM
documentation.

SCADA

See supervisory control and data acquisition.

SCP

See service control policy.

secret

In AWS Secrets Manager, confidential or restricted information, such as a password or user
credentials, that you store in encrypted form. It consists of the secret value and its metadata.
The secret value can be binary, a single string, or multiple strings. For more information, see
What's in a Secrets Manager secret? in the Secrets Manager documentation.

security by design

A system engineering approach that takes security into account through the whole
development process.

S 71

https://docs.aws.eu/IAM/latest/UserGuide/id_roles_providers_saml.html
https://docs.aws.eu/secretsmanager/latest/userguide/whats-in-a-secret.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

security control

A technical or administrative guardrail that prevents, detects, or reduces the ability of a threat
actor to exploit a security vulnerability. There are four primary types of security controls:
preventative, detective, responsive, and proactive.

security hardening

The process of reducing the attack surface to make it more resistant to attacks. This can include
actions such as removing resources that are no longer needed, implementing the security best
practice of granting least privilege, or deactivating unnecessary features in configuration files.

security information and event management (SIEM) system

Tools and services that combine security information management (SIM) and security event
management (SEM) systems. A SIEM system collects, monitors, and analyzes data from servers,
networks, devices, and other sources to detect threats and security breaches, and to generate
alerts.

security response automation

A predefined and programmed action that is designed to automatically respond to or remediate
a security event. These automations serve as detective or responsive security controls that help
you implement AWS security best practices. Examples of automated response actions include
modifying a VPC security group, patching an Amazon EC2 instance, or rotating credentials.

server-side encryption

Encryption of data at its destination, by the AWS service that receives it.

service control policy (SCP)

A policy that provides centralized control over permissions for all accounts in an organization
in AWS Organizations. SCPs define guardrails or set limits on actions that an administrator can
delegate to users or roles. You can use SCPs as allow lists or deny lists, to specify which services
or actions are permitted or prohibited. For more information, see Service control policies in the
AWS Organizations documentation.

service endpoint

The URL of the entry point for an AWS service. You can use the endpoint to connect
programmatically to the target service. For more information, see AWS service endpoints in
AWS General Reference.

S 72

https://docs.aws.eu/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.eu/general/latest/gr/rande.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

service-level agreement (SLA)

An agreement that clarifies what an IT team promises to deliver to their customers, such as
service uptime and performance.

service-level indicator (SLI)

A measurement of a performance aspect of a service, such as its error rate, availability, or
throughput.

service-level objective (SLO)

A target metric that represents the health of a service, as measured by a service-level indicator.

shared responsibility model

A model describing the responsibility you share with AWS for cloud security and compliance.
AWS is responsible for security of the cloud, whereas you are responsible for security in the
cloud. For more information, see Shared responsibility model.

SIEM

See security information and event management system.

single point of failure (SPOF)

A failure in a single, critical component of an application that can disrupt the system.

SLA

See service-level agreement.

SLI

See service-level indicator.

SLO

See service-level objective.

split-and-seed model

A pattern for scaling and accelerating modernization projects. As new features and product
releases are defined, the core team splits up to create new product teams. This helps scale your
organization’s capabilities and services, improves developer productivity, and supports rapid

S 73

https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

innovation. For more information, see Phased approach to modernizing applications in the AWS
Cloud.

SPOF

See single point of failure.

star schema

A database organizational structure that uses one large fact table to store transactional or
measured data and uses one or more smaller dimensional tables to store data attributes. This
structure is designed for use in a data warehouse or for business intelligence purposes.

strangler fig pattern

An approach to modernizing monolithic systems by incrementally rewriting and replacing
system functionality until the legacy system can be decommissioned. This pattern uses the
analogy of a fig vine that grows into an established tree and eventually overcomes and replaces
its host. The pattern was introduced by Martin Fowler as a way to manage risk when rewriting
monolithic systems. For an example of how to apply this pattern, see Modernizing legacy
Microsoft ASP.NET (ASMX) web services incrementally by using containers and Amazon API
Gateway.

subnet

A range of IP addresses in your VPC. A subnet must reside in a single Availability Zone.

supervisory control and data acquisition (SCADA)

In manufacturing, a system that uses hardware and software to monitor physical assets and
production operations.

symmetric encryption

An encryption algorithm that uses the same key to encrypt and decrypt the data.

synthetic testing

Testing a system in a way that simulates user interactions to detect potential issues or to
monitor performance. You can use Amazon CloudWatch Synthetics to create these tests.

system prompt

A technique for providing context, instructions, or guidelines to an LLM to direct its behavior.
System prompts help set context and establish rules for interactions with users.

S 74

https://docs.aws.eu/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://docs.aws.eu/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://docs.aws.eu/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.eu/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.eu/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.eu/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

T

tags

Key-value pairs that act as metadata for organizing your AWS resources. Tags can help you
manage, identify, organize, search for, and filter resources. For more information, see Tagging
your AWS resources.

target variable

The value that you are trying to predict in supervised ML. This is also referred to as an outcome
variable. For example, in a manufacturing setting the target variable could be a product defect.

task list

A tool that is used to track progress through a runbook. A task list contains an overview of
the runbook and a list of general tasks to be completed. For each general task, it includes the
estimated amount of time required, the owner, and the progress.

test environment

See environment.

training

To provide data for your ML model to learn from. The training data must contain the correct
answer. The learning algorithm finds patterns in the training data that map the input data
attributes to the target (the answer that you want to predict). It outputs an ML model that
captures these patterns. You can then use the ML model to make predictions on new data for
which you don’t know the target.

transit gateway

A network transit hub that you can use to interconnect your VPCs and on-premises
networks. For more information, see What is a transit gateway in the AWS Transit Gateway
documentation.

trunk-based workflow

An approach in which developers build and test features locally in a feature branch and then
merge those changes into the main branch. The main branch is then built to the development,
preproduction, and production environments, sequentially.

T 75

https://docs.aws.eu/tag-editor/latest/userguide/tagging.html
https://docs.aws.eu/tag-editor/latest/userguide/tagging.html
https://docs.aws.eu/vpc/latest/tgw/what-is-transit-gateway.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

trusted access

Granting permissions to a service that you specify to perform tasks in your organization in AWS
Organizations and in its accounts on your behalf. The trusted service creates a service-linked
role in each account, when that role is needed, to perform management tasks for you. For more
information, see Using AWS Organizations with other AWS services in the AWS Organizations
documentation.

tuning

To change aspects of your training process to improve the ML model's accuracy. For example,
you can train the ML model by generating a labeling set, adding labels, and then repeating
these steps several times under different settings to optimize the model.

two-pizza team

A small DevOps team that you can feed with two pizzas. A two-pizza team size ensures the best
possible opportunity for collaboration in software development.

U

uncertainty

A concept that refers to imprecise, incomplete, or unknown information that can undermine the
reliability of predictive ML models. There are two types of uncertainty: Epistemic uncertainty
is caused by limited, incomplete data, whereas aleatoric uncertainty is caused by the noise and
randomness inherent in the data. For more information, see the Quantifying uncertainty in
deep learning systems guide.

undifferentiated tasks

Also known as heavy lifting, work that is necessary to create and operate an application but
that doesn’t provide direct value to the end user or provide competitive advantage. Examples of
undifferentiated tasks include procurement, maintenance, and capacity planning.

upper environments

See environment.

U 76

https://docs.aws.eu/organizations/latest/userguide/orgs_integrate_services.html
https://docs.aws.eu/prescriptive-guidance/latest/ml-quantifying-uncertainty/concepts.html
https://docs.aws.eu/prescriptive-guidance/latest/ml-quantifying-uncertainty/concepts.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

V

vacuuming

A database maintenance operation that involves cleaning up after incremental updates to
reclaim storage and improve performance.

version control

Processes and tools that track changes, such as changes to source code in a repository.

VPC peering

A connection between two VPCs that allows you to route traffic by using private IP addresses.
For more information, see What is VPC peering in the Amazon VPC documentation.

vulnerability

A software or hardware flaw that compromises the security of the system.

W

warm cache

A buffer cache that contains current, relevant data that is frequently accessed. The database
instance can read from the buffer cache, which is faster than reading from the main memory or
disk.

warm data

Data that is infrequently accessed. When querying this kind of data, moderately slow queries
are typically acceptable.

window function

A SQL function that performs a calculation on a group of rows that relate in some way to the
current record. Window functions are useful for processing tasks, such as calculating a moving
average or accessing the value of rows based on the relative position of the current row.

workload

A collection of resources and code that delivers business value, such as a customer-facing
application or backend process.

V 77

https://docs.aws.eu/vpc/latest/peering/what-is-vpc-peering.html

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

workstream

Functional groups in a migration project that are responsible for a specific set of tasks. Each
workstream is independent but supports the other workstreams in the project. For example,
the portfolio workstream is responsible for prioritizing applications, wave planning, and
collecting migration metadata. The portfolio workstream delivers these assets to the migration
workstream, which then migrates the servers and applications.

WORM

See write once, read many.

WQF

See AWS Workload Qualification Framework.

write once, read many (WORM)

A storage model that writes data a single time and prevents the data from being deleted or
modified. Authorized users can read the data as many times as needed, but they cannot change
it. This data storage infrastructure is considered immutable.

Z

zero-day exploit

An attack, typically malware, that takes advantage of a zero-day vulnerability.

zero-day vulnerability

An unmitigated flaw or vulnerability in a production system. Threat actors can use this type of
vulnerability to attack the system. Developers frequently become aware of the vulnerability as a
result of the attack.

zero-shot prompting

Providing an LLM with instructions for performing a task but no examples (shots) that can help
guide it. The LLM must use its pre-trained knowledge to handle the task. The effectiveness of
zero-shot prompting depends on the complexity of the task and the quality of the prompt. See
also few-shot prompting.

Z 78

AWS Prescriptive Guidance Implementing managed PostgreSQL for multi-tenant SaaS
applications on AWS

zombie application

An application that has an average CPU and memory usage below 5 percent. In a migration
project, it is common to retire these applications.

Z 79

	AWS Prescriptive Guidance
	Table of Contents
	Implementing managed PostgreSQL for multi-tenant SaaS applications on AWS
	Targeted business outcomes

	Selecting a database for a SaaS application
	Choosing between Amazon RDS and Aurora

	Multi-tenant SaaS partitioning models for PostgreSQL
	PostgreSQL silo model
	PostgreSQL pool model
	PostgreSQL bridge model
	Decision matrix

	Row-level security recommendations
	PostgreSQL availability for the pool model
	Best practices
	Compare AWS options for managed PostgreSQL
	Select a multi-tenant SaaS partitioning model
	Use row-level security for pool SaaS partitioning models

	FAQ
	Which managed PostgreSQL options does AWS offer?
	Which service is optimal for SaaS applications?
	Which unique requirements should I consider if I decide to use a PostgreSQL database with a multi-tenant SaaS application?
	Which models can I use to maintain tenant data isolation with PostgreSQL?
	How do I maintain tenant data isolation with a single PostgreSQL database that is shared across multiple tenants?

	Next steps
	Resources
	References
	Partners

	Document history
	AWS Prescriptive Guidance glossary
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

