Integrierte SageMaker-AI-Algorithmen für Computer Vision
SageMaker AI bietet Bildverarbeitungsalgorithmen, die zur Bildklassifizierung, Objekterkennung und Computer Vision verwendet werden.
-
Bildklassifizierung – MXNet–Er verwendet Beispieldaten mit Antworten (bezeichnet als überwachter Algorithmus). Verwenden Sie diesen Algorithmus zur Klassifikation von Bildern.
-
Bildklassifizierung – TensorFlow – verwendet vorab trainierte TensorFlow Hub-Modelle zur Feinabstimmung für bestimmte Aufgaben (wird als überwachter Algorithmus bezeichnet). Verwenden Sie diesen Algorithmus zur Klassifikation von Bildern.
-
Objekterkennung – MXNet–erkennt und klassifiziert Objekte in Bildern mithilfe eines einzigen tiefen neuronalen Netzwerks. Es handelt sich um einen überwachten Lernalgorithmus, der Bilder als Eingabe akzeptiert und alle Instances von Objekten innerhalb der Bilderszene identifiziert.
-
Objekterkennung – TensorFlow – erkennt Begrenzungsrahmen und Objektbezeichnungen in einem Bild. Es handelt sich um einen überwachten Lernalgorithmus, der Transferlernen mit verfügbaren vortrainierten TensorFlow-Modellen unterstützt.
-
Semantischer Segmentierungsalgorithm–bietet einen feinkörnigen Ansatz auf Pixelebene für die Entwicklung von Computer-Vision-Anwendungen.
| Name des Algorithmus | Kanalname | Trainingseingabemodus | Dateityp | Instance-Klasse | Parallelisierbar |
|---|---|---|---|---|---|
| Bildklassifizierung – MXNet | "train" und "validation", (optional) "train_lst", "validation_lst" und "model" | Datei oder Pipe | recordIO oder Bilddateien (JPEG oder PNG) | GPU | Ja |
| Bildklassifizierung – TensorFlow | Training und Validierung | Datei | Bilddateien (.jpg, .jpeg oder .png) | CPU oder GPU | Ja (nur für mehrere GPUs auf einer einzigen Instance) |
| Objekterkennung | "train" und "validation", (optional) "train_annotation", "validation_annotation" und "model" | Datei oder Pipe | recordIO oder Bilddateien (JPEG oder PNG) | GPU | Ja |
| Objekterkennung – TensorFlow | Training und Validierung | Datei | Bilddateien (.jpg, .jpeg oder .png) | GPU | Ja (nur für mehrere GPUs auf einer einzigen Instance) |
| Semantische Segmentierung | "train" und "validation", "train_annotation", "validation_annotation" und (optional) "label_map" und "model" | Datei oder Pipe | Abbildungsdateien | GPU (nur einzelne Instance) | Nein |